精英家教网 > 高中数学 > 题目详情
1.某零件的三视图如图所示,则该零件的体积为(  )
A.$\frac{7}{3}$B.$\frac{8-π}{3}$C.$\frac{8}{3}$D.$\frac{7-π}{3}$

分析 由三视图可知:该几何体是一个四棱锥去掉一个圆锥的一半.

解答 解:由三视图可知:该几何体是一个四棱锥去掉一个圆锥的一半.
∴该零件的体积V=$\frac{1}{3}×2×{2}^{2}$-$\frac{1}{2}×\frac{1}{3}×π×{1}^{2}×2$=$\frac{8-π}{3}$.
故选:B.

点评 本题考查了四棱锥与圆锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.对于定义域为D的函数y=f(x),若同时满足下列条件:①f(x)在D内单调递增或单调递减;②存在[a,b]⊆D区间,使f(x)在[a,b]上的值域为[a,b],那么把y=f(x),x∈D叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b];
(2)若函数$y=k+\sqrt{x+2}$是闭函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若(x+y)3(2x-y+a)5的展开式中各项系数的和为256,则该展开式中含字母x且x的次数为1的项的系数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{2}^{x}}-1,x<1}\\{\frac{lnx}{{x}^{2}},x≥1}\end{array}\right.$,则函数y=|f(x)|-$\frac{1}{8}$的零点个数为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(t为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2=4$\sqrt{2}$ρsin(θ+$\frac{π}{4}$)-4.
(Ⅰ)求曲线C2的直角坐标方程,并指出其表示何种曲线;
(Ⅱ)若曲线C1与曲线C2交于A、B两点,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|.
(1)求不等式f(x)+x2-4>0的解集;
(2)设g(x)=-|x+7|+3m,若关于x的不等式f(x)<g(x)的解集非空,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知四棱锥P-ABCD的顶点都在球O的球面上,底面ABCD是矩形,平面PAD⊥底面ABCD,△PAD为正三角形,AB=2AD=4,则球O的表面积为(  )
A.$\frac{56π}{3}$B.$\frac{64π}{3}$C.24πD.$\frac{80π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是(  )
A.(-2,1)B.[0,1]C.[-2,0)D.[-2,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知常数ω>0,f(x)=-1+2$\sqrt{3}$sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为$\frac{π}{4}$,若f(x0)=$\frac{6}{5}$,$\frac{π}{4}$≤x0≤$\frac{π}{2}$,则cos2x0=(  )
A.$\frac{3+2\sqrt{3}}{10}$B.$\frac{3-2\sqrt{2}}{10}$C.$\frac{3+4\sqrt{3}}{10}$D.$\frac{3-4\sqrt{3}}{10}$

查看答案和解析>>

同步练习册答案