【题目】已知数列
是公差不为0的等差数列,
,数列
是等比数列,且
,
,
,数列
的前n项和为
.
(1)求数列
的通项公式;
(2)设
,求
的前n项和
;
(3)若
对
恒成立,求
的最小值.
科目:高中数学 来源: 题型:
【题目】已知
、
是定义在实数集
上的实值函数,如果存在
,使得对任何
,都有
,那么称
比
高兴,如果对任何
,都存在
,使得
,那么称
比
幸运,对于实数
和上述函数
,定义
.
(1)①
,
,判断
是否比
高兴?
②
,
,判断
是否比
幸运?
(2)判断下列命题是否正确?并说明理由:
①如果
比
高兴,
比
高兴,那么
比
高兴;
②如果
比
幸运,
比
幸运,那么
比
幸运;
(3)证明:对每个函数
,均存在函数
,使得对任何实数
,
都比
幸运,
也比
幸运.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
为矩形,平面![]()
平面
,
,
,
,
为
中点.
![]()
(Ⅰ)求证:
∥平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)在棱
上是否存在点
,使得![]()
?若存在,求
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
为椭圆上一动点,当
的面积最大时,其内切圆半径为
,设过点
的直线
被椭圆
截得线段
,
当
轴时,
.
(1)求椭圆
的标准方程;
(2)若点
为椭圆
的左顶点,
是椭圆上异于左、右顶点的两点,设直线
的斜率分别为
,若
,试问直线
是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在常数![]()
,使得数列
满足
对一切
恒成立,则称
为可控数列,
.
(1)若
,
,问
有多少种可能?
(2)若
是递增数列,
,且对任意的
,数列
,
,![]()
成等差数列,判断
是否为可控数列?说明理由;
(3)设单调的可控数列
的首项
,前
项和为
,即
.问
的极限是否存在,若存在,求出
与
的关系式;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
长轴的一个端点是抛物线
的焦点,且椭圆焦点与抛物线焦点的距离是1。
(1)求椭圆
的标准方程;
(2)若
是椭圆
的左右端点,
为原点,
是椭圆
上异于
的任意一点,直线
分别交
轴于
,问
是否为定值,说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com