精英家教网 > 高中数学 > 题目详情
非零向量
a
b
夹角为60°,且|
a
-
b
|=1,则|
a
+
b
|的取值范围为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:非零向量
a
b
夹角为60°,|
a
-
b
|
=1,可得
a
2
+
b
2
=|
a
||
b
|
+1≥2|
a
||
b
|
,可得|
a
||
b
|
≤1.于是|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
2|
a
||
b
|+1
,即可得出.
解答: 解:∵非零向量
a
b
夹角为60°,|
a
-
b
|
=1,∴
a
2
+
b
2
-2
a
b
=1
,即
a
2
+
b
2
-2|
a
||
b
|cos60°
=1,
化为
a
2
+
b
2
=|
a
||
b
|
+1≥2|
a
||
b
|
,可得|
a
||
b
|
≤1.当且仅当|
a
|
=|
b
|
=1时取等号.
∴|
a
+
b
|=
a
2
+
b
2
+2
a
b
=
a
2
+
b
2
+2|
a
||
b
|cos60°
=
2|
a
||
b
|+1

1<2|
a
||
b
|+1≤3

1<|
a
+
b
|
3

∴|
a
+
b
|的取值范围为(1,
3
]

故答案为:(1,
3
]
点评:本题考查了向量的数量积定义及其运算性质、基本不等式的性质,考查了推理能力和计算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知四棱柱ABCD-A1B1C1D1中所有棱长都为2,底面ABCD为正方形,侧面DD1C1C⊥底面ABCD,∠D1DC=60°
(Ι)证明:平面CDD1C1⊥平面DAA1D1
(Ⅱ)若O为底面ABCD的对角线交点,求四面体B1-A1OC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠ABC=90°,AB=
3
,BC=1,P为△ABC内一点,∠BPC=90°
(1)若PB=
1
2
,求PA;
(2)若∠APB=150°,求tan∠PBA.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,若a3+a7+a11=6,则S13=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆C:ρ=2cosθ上任意一点到点Q(
2
π
4
)的最大距离为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l的斜率k∈[-1,
3
],则直线l的倾斜角α的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知E,F为圆O:x2+y2=9一直径的两个端点,D为直线x-y+6=0上一动点,则
DE
DF
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C的对边分别是a、b、c,若2bcosA=ccosA+acosC,则cosA=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|
1
4
≤x≤4},B={y|y=log2x-1,x∈A},则A∩B=
 

查看答案和解析>>

同步练习册答案