精英家教网 > 高中数学 > 题目详情
3.函数f(x)=$\sqrt{4-|x|}$+ln$\frac{{x}^{2}-7x+12}{x-4}$的定义域为(  )
A.(-4,3)B.(-4,3]C.(3,4]D.(3,4)

分析 根据二次根式的性质以及对数函数的性质得到关于x的不等式组,解出即可.

解答 解:由题意得:
$\left\{\begin{array}{l}{4-|x|≥0}\\{\frac{{x}^{2}-7x+12}{x-4}>0}\end{array}\right.$,
解得:3<x<4,
故选:D.

点评 本题考查了求函数的定义域问题,考查二次根式而二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.公园里有一扇形湖面,管理部门打算在湖中建一三角形观景平台,希望面积与周长都最大.如图所示扇形AOB,圆心角AOB的大小等于$\frac{π}{3}$,半径为2百米,在半径OA上取一点C,过点C作平行于OB的直线交弧AB于点P.设∠COP=θ;
(1)求△POC面积S(θ)的函数表达式.
(2)求S(θ)的最大值及此时θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:
(1)平面EFA1∥平面BCHG;
(2)BG、CH、AA1三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知样本数据3,2,1,a的平均数为2,则样本的标准差是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.$\int_{-2}^0{\sqrt{4-{{({x+2})}^2}}}$dx=π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x2-2x>0},集合N={0,1,2,3,4},则(∁RM)∩N等于(  )
A.{4}B.{3,4}C.{0,1,2}D.{0,1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的函数f(x)满足f(x)=f(x+2),当x∈[3,5]时,f(x)=2-|x-4|,则下列不等式一定成立的是(  )
A.f( cos$\frac{2π}{3}$)>f(sin$\frac{2π}{3}$)B.f(sin 1)<f(cos 1)
C.f(sin$\frac{π}{6}$)<f(cos$\frac{π}{6}$)D.f(cos 2)>f(sin 2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinα=$\frac{{2\sqrt{2}}}{3}$,cos(α+β)=-$\frac{1}{3}$,且α,β∈(0,$\frac{π}{2}$),则sin(α-β)的值等于$\frac{10\sqrt{2}}{27}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC的内角A,B,C的对边分别是a,b,c,已知$\frac{{{a^2}+{b^2}-{c^2}}}{ab}$•(${\frac{a}{c}$cosB+$\frac{b}{c}$cosA)=1.
(1)求角C;
(2)若c=$\sqrt{7}$,△ABC的周长为5+$\sqrt{7}$,求△ABC的面积S.

查看答案和解析>>

同步练习册答案