分析 求得椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心和左焦点,利用坐标表示向量,借助于椭圆方程,利用配方法,即可求得最小值.
解答 解:椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心和左焦点为O(0,0),F(-1,0)
∵椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,∴y2=3-$\frac{3}{4}{x}^{2}$(-2≤x≤2)
设P(x,y),则$\overrightarrow{OP}$•$\overrightarrow{FP}$=(x,y)•(x+1,y)=x2+x+y2=x2+x+3-$\frac{3}{4}{x}^{2}$=$\frac{1}{4}{x}^{2}+x+3$
∵-2≤x≤2,
∴x=-2时,$\overrightarrow{OP}$•$\overrightarrow{FP}$的最小值为2.
故答案为:2.
点评 本题考查椭圆的标准方程与几何性质,考查向量知识的运用,考查配方法,解题的关键是用坐标表示向量,建立函数关系式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3或$\frac{1}{3}$ | C. | 1或$\frac{1}{3}$ | D. | 1或3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,a∥β,则α∥β | B. | 若a∥α,b⊆α,则a∥b | C. | 若a∥α,a⊆β,则α∥β | D. | 若a⊥α,a⊆β,则α⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 1 | C. | -$\frac{4}{3}$ | D. | -$\frac{8}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com