精英家教网 > 高中数学 > 题目详情
4.a,b为直线,α,β为平面,下列正确的是(  )
A.若a∥α,a∥β,则α∥βB.若a∥α,b⊆α,则a∥bC.若a∥α,a⊆β,则α∥βD.若a⊥α,a⊆β,则α⊥β

分析 在A中,α与β相交或平行;在B中,a与b平行或异面;在C中,α与β相交或平行;在D中,由面面垂直的判定定理得α⊥β.

解答 解:由a,b为直线,α,β为平面,知:
在A中,若a∥α,a∥β,则α与β相交或平行,故A错误;
在B中,若a∥α,b⊆α,则a与b平行或异面,故B错误;
在C中,若a∥α,a⊆β,则α与β相交或平行,故C错误;
在D中,若a⊥α,a⊆β,则由面面垂直的判定定理得α⊥β,故D正确.
故选:D.

点评 本题考查命题真假的判断,考查空间中线线、线面、面面间的关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.三个数20.3,20.8,log20.3的大小关系为(  )
A.${2^{0.3}}<{log_2}0.3<{2^{0.8}}$B.20.3<20.8<log20.3
C.${log_2}0.3<{2^{0.8}}<{2^{0.3}}$D.${log_2}0.3<{2^{0.3}}<{2^{0.8}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若点O和点F分别为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的中心和左焦点,点P为椭圆上任意一点,则$\overrightarrow{OP}$•$\overrightarrow{FP}$的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线f(x)=cosx与曲线g(x)=x2+bx+1在交点(0,1)处有公切线,则b=(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图所示,F1和F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且△F2AB是等边三角形,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.$\sqrt{3}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知直线m斜率为k,经过点(-2,4),将直线向右平移10个单位,再向下平移2个单位,得到直线n,若直线n不经过第四象限,则直线l的斜率k的取值范围是$[0,\frac{1}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的前n项和为Sn,若an=-3Sn+4,bn=-log2an+1
(1)求数列{an}的通项公式与数列{bn}的通项公式;
(2)令cn=$\frac{{b}_{n}}{{2}^{n+1}}$,其中n∈N*,记数列{cn}的前n项和为Tn,求Tn+$\frac{n+2}{{2}^{n}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$ax2+2x-lnx.
(1)当a=0时,求函数的极值;
(2)若f(x)在[$\frac{1}{3}$,2]上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=axm+bx(a、b、m∈R,a≠0)的图象关于y轴对称,在点x=1处的切线方程为y=2x-1,数列{an}各项均为正值,且a1=m,a2=2m,且$\frac{{a}_{n}}{{a}_{n-1}}$=f($\frac{{a}_{{n}_{+1}}}{{a}_{n}}$)(n>1),则a6=(  )
A.$\frac{1}{{2}^{10}}$B.$\frac{1}{{2}^{15}}$C.2${\;}^{\frac{31}{16}}$D.2${\;}^{\frac{47}{16}}$

查看答案和解析>>

同步练习册答案