精英家教网 > 高中数学 > 题目详情
13.(x+3)(x+1)4展开式中不含x2项的系数之和为42.

分析 由(x+3)(x+1)4=(x+3)$(1+{∁}_{4}^{1}x+{∁}_{4}^{2}{x}^{2}+…)$,可得:含x2项的系数=${∁}_{4}^{1}$+3${∁}_{4}^{2}$=22.进而得出答案.

解答 解:(x+3)(x+1)4=(x+3)$(1+{∁}_{4}^{1}x+{∁}_{4}^{2}{x}^{2}+…)$.
∴含x2项的系数=${∁}_{4}^{1}$+3${∁}_{4}^{2}$=22.
因此(x+3)(x+1)4展开式中不含x2项的系数之和=4×24-22=42.
故答案为:42.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.二项式${(2x-\frac{1}{x})^5}$展开式中,第四项的系数为(  )
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若一直线的参数方程为$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),则此直线的倾斜角为(  )
A.60°B.120°C.300°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)的定义域为(0,+∞),则函数$y=\frac{f(x+1)}{{\sqrt{-{x^2}-3x+4}}}$的定义域是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A={x∈N|x≤1},B={x|x2-x-2≤0},则A∩B=(  )
A.{0,1}B.{-1,0,1}C.[-1,1]D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=x-$\frac{1}{x}$-2m•lnx(m∈R)
(Ⅰ)当m=-1时,求函数f(x)的零点;
(Ⅱ)当m>-1时,讨论函数f(x)的单调性;
(Ⅲ)在(Ⅱ)条件下,若f(x)有两个极值点是x1,x2,过点A(x1,f(x1)),B(x2,f(x2))的直线 的斜率为k,问:是否存在m,使k=2-2m?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$\frac{ai}{2-i}=1-2i$,则a=(  )
A.5B.-5C.5iD.-5i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为3x-5y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在如图1所示的平面图形中,△ADE是等腰三角形且AE=DE=$\sqrt{5}$,四边形ABCD为矩形,AD=2,CD=$\sqrt{2}$,△BCF为直角三角形.把△ADE与△BCF分别沿AD、BC折成如图2所示的几何体,且平面ADE⊥平面ABCD,CF⊥平面ABCD,

(1)求证:BD⊥EF;
(2)若CF=1,试求EF与面BDE所成角的正弦值.

查看答案和解析>>

同步练习册答案