精英家教网 > 高中数学 > 题目详情
7.已知f(x)=x2+3xf′(1),则f′(1)为(  )
A.-1B.-2C.0D.1

分析 先求出f′(x)=2x+3f'(1),令x=1,即可求出f′(1 ).

解答 解:因为f(x)=x2+3xf'(1)
所以:f′(x)=2x+3f'(1),
令x=1,得f′(1)=2+3f'(1),
故f′(1)=-1,
故选:A.

点评 本题考查函数与导数,求导公式的应用及函数值求解.本题求出f′(x ) 是关键步骤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,其中正视图、侧视图中的两条虚线互相垂直,则该几何体的表面积是(  )
A.92B.$16\sqrt{2}+80$C.80D.$16\sqrt{2}+92$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,AB=5,AC=7,BC=8,则BC边上的中线AD的长等于$\sqrt{21}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)的定义域为[0,1],则f(2x-3)的定义域是(  )
A.{x|x≥3}B.{x|-2≤x-1}C.{x|x≤-2}D.{x|log23≤x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x3+ax2+bx+a2在x=1时都取得极值10
(1)求a,b的值.
(2)若对x∈[-1,2],不等式f(x)+3c≥c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,在集合A={x∈Z|-9≤x≤10}中随机地取一个数值作为x输入,则输出的y值落在区间[-4,3]内的概率为(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.给定函数f(x)=lg$\frac{{{x^2}+1}}{|x|}$,完成下列问题:
(1)指出函数的奇偶性;(必须说明理由)
(2)指出函数的单调区间;(必须说明理由)
(3)该函数是否存在最值?如存在,求出该最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若函数f(x)=2cos2x+2$\sqrt{3}$sinxcosx+m在区间[0,$\frac{π}{2}$]上的最大值为2,求函数f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过正四棱锥(侧棱长全是1,侧面三角形的顶角为30度)的底面一个顶点的平面截棱锥所得四边形的周长的最小值是(  )
A.1B.2C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案