分析 由函数y=f(x)是R上的偶函数,对任意x∈R,都有f(x+4)=f(x)+f(2)成立,我们令x=-2,可得f(-2)=f(2)=0,进而得到f(x+4)=f(x)恒成立,再由当x1,x2∈[0,2]且x1≠x2时,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,我们易得函数在区间[0,2]单调递减,由此我们画出函数的简图,然后对题目中的四个结论逐一进行分析,即可得到答案.
解答 解:∵对任意x∈R,都有f(x+4)=f(x)+f(2)成立
当x=-2,可得f(-2)=0,
又∵函数y=f(x)是R上的偶函数
∴f(-2)=f(2)=0,
又由当x1,x2∈[0,2]且x1≠x2时,都有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,
∴函数在区间[0,2]单调递减
故函数f(x)的简图如下图所示:![]()
由图可知:①正确,②正确,③错误,④正确
故答案:①②④.
点评 本题考查的知识点是函数的图象,函数的奇偶性,函数的周期性,函数的零点,解答的关键是根据已知,判断函数的性质,并画出函数的草图,结合草图分析题目中相关结论的正误.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | $\frac{7}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{29}{14}$ | B. | -$\frac{29}{14}$ | C. | $\frac{29}{7}$ | D. | -$\frac{29}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com