精英家教网 > 高中数学 > 题目详情
6.已知点F1,F2分别是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左,右焦点,过F2且垂直于x轴的直线与双曲线交于M,N两点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{N{F}_{1}}$>0,则该双曲线的离心率e的取值范围是(  )
A.($\sqrt{2}$,$\sqrt{2}$+1)B.(1,$\sqrt{2}$+1)C.(1,$\sqrt{3}$)D.$({\sqrt{3},+∞})$

分析 求出交点M,N的坐标,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{N{F}_{1}}$>0,则只要∠MF1F2<45°即可,利用斜率公式进行求解即可.

解答 解:当x=c时,$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,得$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{c}^{2}}{{a}^{2}}$-1=$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$,
则y2=$\frac{{b}^{4}}{{a}^{2}}$,则y=±$\frac{{b}^{2}}{a}$,
则M(c,$\frac{{b}^{2}}{a}$),N(c,-$\frac{{b}^{2}}{a}$),F1(-c,0),
若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{N{F}_{1}}$>0,
则只要∠MF1F2<45°即可,
则tan∠MF1F2<tan45°=1,
即$\frac{\frac{{b}^{2}}{a}}{2c}$=$\frac{{b}^{2}}{2ac}$<1,即b2<2ac,
则c2-a2<2ac,
即c2-2ac-a2<0,
则e2-2e-1<0,
得1-$\sqrt{2}$<e<1+$\sqrt{2}$,
∵e>1,
∴1<e<1+$\sqrt{2}$,
故选:B

点评 本题主要考查双曲线离心率的计算,根据向量数量积的关系转化为求∠MF1F2<45°是解决本题的关键.考查学生的转化能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.已知命题p:函数y=$\frac{x+1}{x}$的图象关于点(0,1)对称,q:函数y=$\frac{{x}^{2}+1}{x}$的极小值为2.给出下列四个命题:①p∨q;②p∧q③(¬p)∨q;④p∧(¬q).其中真命题是①②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.课外兴趣小组共有15人,其中9名男生,6名女生,其中1名为组长,现要选3人参加数学竞赛,分别求出满足下列各条件的不同选法数.
(1)要求组长必须参加;
(2)要求选出的3人中至少有1名女生;
(3)要求选出的3人中至少有1名女生和1名男生.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知(x+2)5=a0+a1(x+4)+a2(x+4)2+a3(x+4)3+a4(x+4)4+a5(x+4)5,则a3=40.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数1,m,4构成一个等比数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知定义在D=($\frac{-1-\sqrt{5}}{2}$,$\frac{-1+\sqrt{5}}{2}$)上的函数f(x)=$\frac{1}{1-x-{x}^{2}}$,存在无穷数列{an},满足f(x)=a0+a1x+a2x2+…+anxn+…
(1)试求数列{an}的前三项a0、a1、a2的值,并证明:对任意的n∈N*都有an≥n;
(2)数列{an}满足bn=$\frac{{a}_{n}}{{a}_{n-1}{a}_{n+1}}$,n∈N*,是否存在正常数r,使{bn}的前n项和Sn≤rf(x)对任意的x∈D恒成立?若存在,试求出常数r的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的实轴的两个端点和虚轴的两个端点恰好构成一个正方形,则此双曲线的离心率为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点.若直线l:x=-$\frac{{a}^{2}}{c}$上存在点P,使得线段PF2的中垂线与x轴交点在椭圆内部,则椭圆C离心率的取值范围是(  )
A.(0,1)B.(0,$\sqrt{2}$-1)C.($\sqrt{2}$-1,1)D.(2-$\sqrt{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设i为虚数单位,复数z=$\frac{3-i}{i}$,则z的共轭复数$\overline{z}$=(  )
A.-1-3iB.1-3iC.-1+3iD.1+3i

查看答案和解析>>

同步练习册答案