精英家教网 > 高中数学 > 题目详情
3.设数列{an}的前n项为Sn,点$(n,\frac{S_n}{n}),\;(n∈{N^*})$均在函数$y=\frac{1}{2}x+\frac{1}{2}$的图象上.
(1)求数列{an}的通项公式.
(2)设${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,Tn为数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

分析 (1)通过点(n,$\frac{{S}_{n}}{n}$)(n∈N*)均在函数$y=\frac{1}{2}x+\frac{1}{2}$的图象上,求出Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,利用当n≥2时,an=Sn-Sn-1,求出通项公式;
(2)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,利用裂项求和,Tn<$\frac{m}{20}$求得m的取值范围,即可求得使得Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

解答 解:(1)∵点$(n,\frac{S_n}{n}),\;(n∈{N^*})$均在函数$y=\frac{1}{2}x+\frac{1}{2}$的图象上,即$\frac{{S}_{n}}{n}$=$\frac{1}{2}$n+$\frac{1}{2}$,
∴Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,
当n≥2时,Sn-1=$\frac{1}{2}$(n-1)2+$\frac{1}{2}$(n-1),
an=Sn-Sn-1=$\frac{1}{2}$n2+$\frac{1}{2}$n-[$\frac{1}{2}$(n-1)2+$\frac{1}{2}$(n-1)]=n,
当n=1时,a1=1,满足an=1,
即数列{an}的通项公式为an=n;
(2)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$,
数列{bn}的前n项和Tn,Tn=(1-$\frac{1}{2}$)+($\frac{1}{2}$-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{4}$)+…+($\frac{1}{n}$-$\frac{1}{n+1}$),
=1-$\frac{1}{n+1}$,
=$\frac{n}{n+1}$,
要使得Tn<$\frac{m}{20}$对所有n∈N*都成立,
则$\frac{m}{20}$≥1
∴m≥20,
即m的最小正整数m=20.

点评 本题考查数列的求和的方法,考查“裂项法”的应用,考查数列与不等式的综合应用,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设等差数列{an}的前n项和为Sn,若a1=-13,d=2,则当Sn取最小值时,n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知命题p:?x∈R,x2+2x+1>0,则?p是真命题(填“真命题”、“假命题”).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知Sn为数列{an}的前n项和,${a_1}=2,2{S_n}=(n+1){a_n}+n-1.(n∈{N^*})$
(1)求数列{an}的通项公式.
(2)若数列bn满足:$\frac{{a}_{1}}{\sqrt{{b}_{1}+1}}$+$\frac{{a}_{2}}{\sqrt{{b}_{2}+1}}$+…+$\frac{{a}_{n}}{\sqrt{{b}_{n}+1}}$=$\frac{{n}^{2}+n}{2}$(n∈N*),不等式M≤anbn+2对任意n∈N*恒成立,求实数M的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知钝角△ABC的三边a=k,b=k+1,c=k+2,求k的取值范围(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.边长为2的正三角形绕其一边旋转一周得一几何体,则其表面积与俯视图(垂直于旋转轴)的面积分别为(  )
A.$2\sqrt{3}π,3π$B.$4\sqrt{3}π,3π$C.$\sqrt{3}π,2π$D.3π,2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)是定义在(-3,0)∪(0,3)上的偶函数,当0<x<3时,f(x)的图象如图所示,则不等式f(-x)•x>0的解集是(  )
A.(-1,0)∪(0,1)B.(-3,-1)∪(1,3)C.(-3,-1)∪(0,1)D.(-1,0)∪(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(1-x)7展开式的第6项系数的值为-21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某班级共有40人,选择A兴趣班的占70%,选择B兴趣班的占60%,有x人既选择A又选择B,则x的范围为[12,24].

查看答案和解析>>

同步练习册答案