精英家教网 > 高中数学 > 题目详情
4.如图,四棱锥B-ACDE的底面ACDE满足 DE∥AC,AC=2DE.
(Ⅰ)若DC⊥平面ABC,AB⊥BC,求证:平面ABE⊥平面BCD;
(Ⅱ)求证:在平面ABE内不存在直线与DC平行;
某同学用分析法证明第(1)问,用反证法证明第 (2)问,证明过程如下,请你在横线上填上合适的内容.
(Ⅰ)证明:欲证平面ABE⊥平面BCD,
只需证AB⊥平面BCD,
由已知AB⊥BC,只需证AB⊥DC,
由已知DC⊥平面ABC可得DC⊥AB成立,
所以平面ABE⊥平面BCD.
(Ⅱ)证明:假设在平面ABE内存在直线与DC平行,
又因为DC?平面ABE,所以DC∥平面ABE.
又因为平面ACDE∩平面ABE=AE,
所以DC∥AE,
又因为DE∥AC,所以ACDE是平行四边形,
所以AC=DE,这与AC=2DE矛盾,
所以假设错误,原结论正确.

分析 用分析法证明第(Ⅰ)问,用反证法证明第 (Ⅱ)问,根据分析法、反证法的证明步骤,即可得出结论.

解答 (Ⅰ)证明:欲证平面ABE⊥平面BCD,
只需证AB⊥平面BCD,----------------------------------------------(2分)
由已知AB⊥BC,只需证AB⊥DC,-------------------------------------------------(4分)
由已知DC⊥平面ABC可得DC⊥AB成立,
所以平面ABE⊥平面BCD.
(Ⅱ)证明:假设在平面ABE内存在直线与DC平行,---------------------------------(6分)
又因为DC?平面ABE,所以DC∥平面ABE.
又因为平面ACDE∩平面ABE=AE,
所以DC∥AE,---------------------------------------(8分)
又因为DE∥AC,所以ACDE是平行四边形,
所以AC=DE,这与AC=2DE矛盾,---------------------------------------------(10分)
所以假设错误,原结论正确.
故答案为AB⊥平面BCD;AB⊥DC;在平面ABE内存在直线与DC平行;DC∥AE;AC=2DE.

点评 本题考查分析法、反证法,考查学生分析解决问题的能力,正确运用分析法、反证法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.为研究数学成绩是否对物理成绩有影响,某校数学社团对该校1501班上学期期末成绩进行了统计,结果显示在数学成绩及格的30人中,有16人的物理成绩及格,在数学成绩不及格的20人中,有5人的物理成绩及格.
(1)根据以上资料画出数学成绩与物理成绩的列联表;
(2)能否在犯错误的概率不超过0.050的前提下认为数学成绩与物理成绩有关系?
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;n=a+b+c+d
 P(K2≥k0 0.10 0.050.010 
 k0 2.7063.841  6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设M、N是抛物线C:y2=3x上任意两点,点E的坐标为(-λ,0)(λ≥0),若$\overrightarrow{EM}$•$\overrightarrow{EN}$的最小值为0,则λ=(  )
A.0B.$\frac{3}{2}$C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设点A为曲线C:ρ=2cosθ在极轴Ox上方的一点,且0≤∠AOx≤$\frac{π}{4}$,以A为直角顶点,AO为一条直角边作等腰直角三角形OAB(B在A的右下方),求点B的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=-x3+3x+2分别在x1、x2处取得极小值、极大值.xOy平面上点A、B的坐标分别为(x1,f(x1))、(x2,f(x2)),该平面上动点P满足$\overrightarrow{PA}$•$\overrightarrow{PB}$=4.求:
(1)求点A、B的坐标;
(2)求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知某公司生产一种仪器元件,年固定成本为20万元,每生产1万件仪器元件需另外投入8.1万元,设该公司一年内共生产此种仪器元件x万件并全部销售完,每万件的销售收入为f(x)万元,且
f(x)=$\left\{\begin{array}{l}32.4-\frac{1}{10}{x^2}(0<x≤10)\\ \frac{324}{x}-\frac{1000}{x^2}(x>10)\end{array}$
(Ⅰ)写出年利润y(万元)关于年产品x(万件)的函数解析式;
(Ⅱ)当年产量为多少万件时,该公司生产此种仪器元件所获年利润最大?
(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}{x^2}$-5x+4lnx.
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=$\frac{a}{x-4}$+10(x-7)2.其中3<x<7,a为常数.已知销售价格为6元/千克时,每日可售出该商品11千克.
(Ⅰ)求a的值;
(Ⅱ)若该商品的成本为4元/千克,试确定销售价格x(单位:元/千克)的值,使商场每日销售该商品所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若f(x)是定义在R上的可导函数,且ef'(x)的图象如图所示,则y=f(x)的递减区间是(  )
A.(-∞,0)B.(2,+∞)C.(0,1)D.(0,2)

查看答案和解析>>

同步练习册答案