精英家教网 > 高中数学 > 题目详情
13.已知f(x)=x3-9x2cosα+48xcosβ+18sin2α,g(x)=f′(x),且对任意的实数t均有g(1+e-|t|)≥0,g(3+sint)≤0.
(1)求cosα+2cosβ的值.
(2)若φ(x)=$\frac{1}{3}$x3-2x2cosβ+xcosα,设h(x)=lnφ′(x),对于任意的x∈[0,1],不等式h(x+1-m)<h(2x+2)恒成立,求实数m的取值范围.

分析 (1)根据恒成立列出关于角α的方程或不等式(组),然后求解;
(2)这是一个不等式恒成立问题,可利用单调性构造出关于m的不等式(组)求解.

解答 解:(1)因为g(x)=f′(x)=3x2-18xcosα+48cosβ.
又因为1+e-|t|∈(1,2],3+sint∈[2,4]由题意知g(x)≥0在x∈(1,2]恒成立
g(x)≤0在x∈[2,4]恒成立,故g(2)=0且g(4)≤0.
即有$\left\{\begin{array}{l}{g(2)=12-36cosα+48cosβ=0}\\{g(4)=48-72cosα+48cosβ≤0}\end{array}\right.$⇒36-36cosα≤0⇒cosα≥1⇒cosα=1.
所以cosβ=$\frac{1}{2}$,所以cosα+2cosβ=2.
(2)由(1)知φ(x)=$\frac{1}{3}{x}^{3}-{x}^{2}+x$,
所以φ′(x)=x2-2x+1=(x-1)2
所以h(x)=lnφ′(x)=2ln|x-1|.
h(x+1-m)=2ln|x-m|,h(2x+2)=2ln|2x+1|,
因为x∈[0,1],所以|2x+1|=2x+1,所以ln|2x+1|=ln(2x+1).
h(x+1-m)<h(2x+2)?0<|x-m|<2x+1.
∴$\left\{\begin{array}{l}{-2x-1<x-m<2x+1}\\{x≠m}\end{array}\right.$?$\left\{\begin{array}{l}{-x-1<m<3x+1}\\{x≠m}\end{array}\right.$.
当x∈[0,1]时,-x-1∈[-2,-1],3x+1∈[1,4]⇒-1<m<1.
因为x≠m,所以m∉[0,1].故-1<m<0.

点评 本题考查了利用不等关系求值的思路,主要还是结合函数的性质求解,二是关于不等式的恒成立问题,往往借助于函数的最值解决问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.甲、乙两位同学在5次考试中的数学成绩用茎叶图表示如图,中间一列的数字表示数学成绩的十位数字,两边的数字表示数学成绩的个位数字.若甲、乙两人的平均成绩分别是$\overline{{x}_{甲}}$、$\overline{{x}_{乙}}$,则下列说法正确的是(  )
A.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,甲比乙成绩稳定B.$\overline{{x}_{甲}}$<$\overline{{x}_{乙}}$,乙比甲成绩稳定
C.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,甲比乙成绩稳定D.$\overline{{x}_{甲}}$>$\overline{{x}_{乙}}$,乙比甲成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=1,an=logn(n+1)(n≥2,n∈N*),定义:使乘积a1•a2•…•aK
正整数的k(k∈N*)叫做“简易数”.
(1)若k=3时,则a1•a2•a3=2;
(2)求在[3,2015]内所有“简易数”的和为2024.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A、B、C的对边分别为a、b、c,已知4sin2$\frac{A+B}{2}$-cos2C=$\frac{7}{2}$,且c=2,则△ABC的面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设x,y满足约束条件$\left\{\begin{array}{l}{x≤0}\\{y≤0}\\{\frac{x}{3a}+\frac{y}{4a}≤1(a<0)}\end{array}\right.$,若z=$\frac{y-1}{x-1}$的最小值为(x2-$\frac{1}{{x}^{3}}$)5的展开式的常数项的$\frac{1}{40}$,则实数a值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.曲线f(x)=x2sinx在点(π,f(π))处的切线的纵截距为π3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(Ⅰ)求棱锥C-ADE的体积;
(Ⅱ)求证:平面ACE⊥平面CDE;
(Ⅲ)在线段DE上是否存在一点F,使AF∥平面BCE?若存在,求出$\frac{EF}{ED}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数i(1+i)(i为虚数单位)的共轭复数是(  )
A.1+iB.1-iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知抛物线E:x2=4y,m,n是经过点A(a,-1)且倾斜角互补的两条直线,其中m与E有唯一公共点B,n与E相交于不同的两点C,D
(Ⅰ)求m的斜率k的取值范围;
(Ⅱ)当n过E的焦点时,求B到n的距离.

查看答案和解析>>

同步练习册答案