精英家教网 > 高中数学 > 题目详情
设函数f(x)的导函数为f′(x),若对任意x∈R都有f′(x)>f(x)成立,则(  )
A、f(ln2014)<2014f(0)
B、f(ln2014)=2014f(0)
C、f(ln2014)>2014f(0)
D、f(ln2014)与2014f(0)的大小关系不确定
考点:导数的运算
专题:函数的性质及应用
分析:构造函数g(x)=
f(x)
ex
,利用导数可判断g(x)的单调性,由单调性可得g(ln2014)与g(0)的大小关系,整理即可得到答案.
解答: 令g(x)=
f(x)
ex
,则g′(x)=
f′(x)•ex-f(x)•e x
e2x
=
f′(x)-f(x)
ex

因为对任意x∈R都有f′(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又ln2014>0,所以g(ln2014)>g(0),即
f(ln2014)
eln2014
f(0)
e0

所以 f(ln2014)>2014f(0),
故选:C.
点评:本题考查导数的运算及利用导数研究函数的单调性,属中档题,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知A、M、B三点共线,m
OA
-3
OM
+
OB
=
0
,若
AM
=t
BA
,则实数t的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=4x上一点P到直线x=-1的距离与到点Q(2,2)的距离之差的最大值为(  )
A、3
B、
3
C、5
D、
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足等式y2=x,那么
y
x+1
的最大值是(  )
A、-1
B、1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线
x2
a2
-
y2
9
=1(a>0)的渐近线方程为3x±2y=0,则
a
1
1
x
)dx的值为(  )
A、ln2B、0C、ln3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

若平面向量
a
b
的夹角为60°,且|
a
|=2|
b
|,则(  )
A、
a
⊥(
b
+
a
B、
a
⊥(
b
-
a
C、
b
⊥(
b
+
a
D、
b
⊥(
b
-
a

查看答案和解析>>

科目:高中数学 来源: 题型:

圆台侧面积为2π,母线l与底面所成角为60°,上底半径为x,下底半径为y (y>x>0),则函数y=f (x)的图象是(  )(注:圆台侧面积公式S=π(r1+r2)l)
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

一个多面体的直观图和三视图所示,M是AB的中点,一只蝴蝶在几何体ADF-BCE内自由飞翔,由它飞入几何体F-AMCD内的概率为(  )
A、
3
4
B、
2
3
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[ax2+(a-1)2x-a2+3a-1]ex(a∈R).
(Ⅰ)若函数f(x)在(2,3)上单调递增,求实数a的取值范围;
(Ⅱ)若a=0,设g(x)=
f(x)
ex
+lnx-x,斜率为k的直线与曲线y=g(x)交于A(x1,y1),B(x2,y2)(其中x1<x2)两点,证明:(x1+x2)k>2.

查看答案和解析>>

同步练习册答案