精英家教网 > 高中数学 > 题目详情
1.已知函数f(x2-3)=lg$\frac{{x}^{2}}{{x}^{2}-4}$,则 f(x)的定义域为(1,+∞).

分析 利用换元法先求出函数f(x)的表达式,根据函数成立的条件进行求解即可.

解答 解:设t=x2-3,则x2=t+3,
则f(t)=lg$\frac{t+3}{t+3-4}$=lg$\frac{t+3}{t-1}$,
由$\frac{t+3}{t-1}$>0得t>1或t<-3,
∵t=x2-3≥-3,
∴t>1,
即f(t)=lg$\frac{t+3}{t-1}$的定义域为(1,+∞),
故函数f(x)的定义域为(1,+∞),
故答案为:(1,+∞)

点评 本题主要考查函数的定义域的求解,根据条件先求出函数f(x)的解析式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设m,n为两条不同的直线,α,β为两个不同的平面,下列命题中为真命题的是(  )
A.若m∥α,n∥α,则m∥nB.若m⊥α,α⊥β,则m∥βC.若m⊥α,α⊥β,则m⊥βD.若m⊥α,m∥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin$\frac{x}{3}cos\frac{x}{3}+\sqrt{3}{cos^2}\frac{x}{3}$.
(1)将f(x)写成Asin(ωx+φ)+h(A>0)的形式,并求其图象对称中心的横坐标;
(2)若函数f(x)的定义域为$D=(0,\frac{π}{3})$,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的右焦点F作斜率k=-1的直线交椭圆于A,B两点,且$\overrightarrow{OA}+\overrightarrow{OB}与\overrightarrow a=(1,\frac{1}{3})$共线.
(1)求椭圆的离心率;
(2)设P为椭圆上任意一点,且$\overrightarrow{OP}$=m$\overrightarrow{OA}$+n$\overrightarrow{OB}$(m,n∈R)证明:m2+n2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知x,y∈R,i为虚数单位,且yi-x=-1+i,则(1-i)x+y的值为(  )
A.2B.-2iC.-4D.2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)的导函数为 f′(x),对任意x∈R都有f(x)>f′(x)成立,则(  )
A.3f(ln2)<2f(ln3)B.3f(ln2)=2f(ln3)
C.3f(ln2)>2f(ln3)D.3f(ln2)与2f(ln3)的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.命题“对任意的x∈R,sinx≤1”的否定是(  )
A.不存在x∈R,sinx≤1B.存在x∈R,sinx≤1
C.存在x∈R,sinx>1D.对任意的x∈R,sinx>1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集为R,集合A={x|y=1og2(x-1)},B={x|x2-3x+2≤0},则A∩CRB=(  )
A.{x|x>2}B.{x|1≤x≤2}C.{x|x≥2}D.{x|x<1或x>2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)={2^{{x^2}+1}}$,$x∈[{-1,\;\sqrt{2}}]$的值域为(  )
A.[2,8]B.[4,8]C.[1,3]D.[2,3]

查看答案和解析>>

同步练习册答案