精英家教网 > 高中数学 > 题目详情
13.命题“对任意的x∈R,sinx≤1”的否定是(  )
A.不存在x∈R,sinx≤1B.存在x∈R,sinx≤1
C.存在x∈R,sinx>1D.对任意的x∈R,sinx>1

分析 直接利用全称命题的否定是特称命题写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,sinx≤1”的否定是:存在x∈R,sinx>1.
故选:C.

点评 本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinC+sin(B-A)=$\sqrt{2}$sin2A,A≠$\frac{π}{2}$.
(Ⅰ)求角A的取值范围;
(Ⅱ)若a=1,△ABC的面积S=$\frac{\sqrt{3}+1}{4}$,C为钝角,求角A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.数列{an}是公差不为零的等差数列,a5=6.数列{bn}满足:b1=3,bn+1=b1b2b3…bn+1.
(Ⅰ)当n≥2时,求证:$\frac{{{b_{n+1}}-1}}{{{b_n}-1}}$=bn
(Ⅱ)当a3>1且a3∈N*时,a3,a5,ak1,ak2,…,akn,…为等比数列.(i)求a3;(ii)当a3取最小值时,求证:$\frac{1}{b_1}$+$\frac{1}{b_2}$+$\frac{1}{b_3}$+…+$\frac{1}{b_n}$>4(${\frac{1}{{{a_{k_1}}-1}}$+$\frac{1}{{{a_{k_2}}-1}}$+$\frac{1}{{{a_{k_3}}-1}}$+…+$\frac{1}{{{a_{k_n}}-1}}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x2-3)=lg$\frac{{x}^{2}}{{x}^{2}-4}$,则 f(x)的定义域为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,焦点在x轴上,离心率为$\frac{\sqrt{3}}{2}$,它的一个顶点恰好是抛物线x2=4$\sqrt{2}$y的焦点.
(I)求椭圆C的方程;
(Ⅱ)直线x=2与椭圆交于P,Q两点,P点位于第一象限,A,B是椭圆上位于直线x=2两侧的动点.
(i)若直线AB的斜率为$\frac{1}{2}$,求四边形APBQ面积的最大值;
(ii)当点A,B运动时,满足∠APQ=∠BPQ,问直线AB的斜率是否为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设等比数列{an}的前n项和为Sn,若a4=8,Sn+1=pSn+1,(p∈R),则a1=1,p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知等差数列{an}满足a2+a4+a2012+a2014=8,且Sn是该数列的前n和,则S2015=4030.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=cosx•sin($\frac{π}{6}$-x)
(1)求f(x)的单调减区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(C)=-$\frac{1}{4}$,a=2,且△ABC的面积为2$\sqrt{3}$,求边长C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别为a,b,c.已知(2c-a)cos B=bcos A.
(Ⅰ)求角B的大小;
(Ⅱ)若a-2c=1,且△ABC的面积为$\frac{5\sqrt{3}}{2}$,求边a的长.

查看答案和解析>>

同步练习册答案