分析 (1)过点C作CM⊥AB,垂足为M,可得四边形ADCM是矩形利用勾股定理可得CM=$\sqrt{3}$.由AC2+BC2=16=AB2,利用勾股定理的逆定理可得AC⊥CB.
由矩形的性质可得:AF⊥AB.利用面面垂直的性质定理可得:AF⊥平面ABCD,又BE∥AF,可得BE⊥平面ABCD,BE⊥AC,即可证明AC⊥平面BCE.
(2)建立如图所示的空间直角坐标系.设平面BCF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CF}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,利用点E到平面BCF的距离d=$\frac{|\overrightarrow{n}•\overrightarrow{EB}|}{|\overrightarrow{n}|}$即可得出.
解答
证明:(1)过点C作CM⊥AB,垂足为M.则四边形ADCM是矩形,
∴AM=DC=3,∴BM=1,
在Rt△BCM中,CM=$\sqrt{B{C}^{2}-B{M}^{2}}$=$\sqrt{3}$.
在Rt△ACM中,AC2=AM2+CM2=12,
∴AC2+BC2=16=AB2,
∴∠ACB=90°,∴AC⊥CB.
∵四边形ABEF为矩形,
∴AF⊥AB.
∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,
∴AF⊥平面ABCD,又BE∥AF,
∴BE⊥平面ABCD,
由AC?平面ABCD,
∴BE⊥AC,又BE∩BC=B,
∴AC⊥平面BCE.
解:(2)建立如图所示的空间直角坐标系.
∴A(0,0,0),C($\sqrt{3}$,3,0),B(0,4,0),F(0,0,2),E(0,4,2).
∴$\overrightarrow{CF}$=(-$\sqrt{3}$,-3,2),$\overrightarrow{BC}$=($\sqrt{3}$,-1,0),$\overrightarrow{EB}$=(0,0,-2).
设平面BCF的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CF}=0}\\{\overrightarrow{n}•\overrightarrow{BC}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{-\sqrt{3}x-3y+2z=0}\\{\sqrt{3}x-y=0}\end{array}\right.$,
取$\overrightarrow{n}$=$(1,\sqrt{3},2\sqrt{3})$,
∴点E到平面BCF的距离d=$\frac{|\overrightarrow{n}•\overrightarrow{EB}|}{|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{\sqrt{{1}^{2}+(\sqrt{3})^{2}+(2\sqrt{3})^{2}}}$=$\frac{4\sqrt{3}}{4}$=$\sqrt{3}$.
点评 本题考查了空间位置关系、距离的计算、线面垂直平行判定与性质定理、矩形的性质、勾股定理与逆定理的应用、法向量的应用、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 60 | B. | 61 | C. | 62 | D. | 63 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com