·ÖÎö £¨1£©ÓÉÍÖÔ²ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬Çó³öÍÖÔ²E£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®M£¨0£¬$\sqrt{3}$£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨4k2+3£©x2+16$\sqrt{3}kx$+36=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßµÄбÂʹ«Ê½ÄÜÇó³öÖ±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ£®
£¨2£©ÀûÓÃÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽ£¬ÄÜÇó³ö¡÷ABMµÄÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨1£©¡ßÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬
¡àa=2£¬c=1£¬¡àb2=4-1=3£¬
¡àÍÖÔ²E£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®¡àM£¨0£¬$\sqrt{3}$£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨4k2+3£©x2+16$\sqrt{3}kx$+36=0£¬
¡÷=$£¨16\sqrt{3}k£©^{2}-4¡Á36£¨4{k}^{2}+3£©$£¾0£¬½âµÃk£¾1.5»òk£¼-1.5£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=-\frac{16\sqrt{3}k}{4{k}^{2}+3}$£¬${x}_{1}{x}_{2}=\frac{36}{4{k}^{2}+3}$£¬
kMA•kMB=$\frac{{y}_{1}-\sqrt{3}}{{x}_{1}}•\frac{{y}_{2}-\sqrt{3}}{{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+\sqrt{3}k£¨{x}_{1}+{x}_{2}£©+3}{{x}_{1}{x}_{2}}$
=$\frac{\frac{36{k}^{2}}{4{k}^{2}+3}-\frac{48{k}^{2}}{4{k}^{2}+3}+3}{\frac{36}{4{k}^{2}+3}}$
=$\frac{48{k}^{2}-48{k}^{2}+9}{36}$=$\frac{1}{4}$£®
¡àÖ±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ$\frac{1}{4}$£®
£¨2£©|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨-\frac{16\sqrt{3}k}{4{k}^{2}+3}£©^{2}-4¡Á\frac{36}{4{k}^{2}+3}]}$=$\frac{4}{4{k}^{2}+3}$$\sqrt{3£¨1+{k}^{2}£©£¨4{k}^{2}-9£©}$£¬
M£¨0£¬$\sqrt{3}$£©µ½Ö±Ïßl£ºy=kx+2$\sqrt{3}$µÄ¾àÀëd=$\frac{\sqrt{3}}{\sqrt{{k}^{2}+1}}$£¬
¡à¡÷ABMµÄÃæ»ýS¡÷ABM=$\frac{1}{2}¡Ád¡Á|AB|$=$\frac{1}{2}¡Á\frac{\sqrt{3}}{\sqrt{{k}^{2}+1}}$¡Á$\frac{4}{4{k}^{2}+3}$$\sqrt{3£¨1+{k}^{2}£©£¨4{k}^{2}-9£©}$
=$\frac{6\sqrt{4{k}^{2}-9}}{4{k}^{2}+3}$=$\frac{6}{\sqrt{4{k}^{2}-9}+\frac{12}{\sqrt{4{k}^{2}-9}}}$¡Ü$\frac{6}{2\sqrt{12}}$=$\frac{\sqrt{3}}{2}$£¬
µ±ÇÒ½öµ±$\sqrt{4{k}^{2}-9}$=$\frac{12}{\sqrt{4{k}^{2}-9}}$£¬¼´k2=$\frac{21}{4}$ʱ£¬¡÷ABMµÄÃæ»ýÈ¡×î´óÖµ$\frac{\sqrt{3}}{2}$£®
µãÆÀ ±¾Ì⿼²éÁ½Ö±ÏßµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÇ󷨣¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßµÄбÂʹ«Ê½¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽµÄºÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨2.5£© | B£® | f£¨f£¨2.5£©£© | C£® | f£¨f£¨1.5£©£© | D£® | f£¨2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=2sin£¨$\frac{¦Ð}{3}$x+$\frac{¦Ð}{6}$£© | B£® | y=2sin£¨$\frac{¦Ð}{3}$x+$\frac{5¦Ð}{6}$£© | C£® | y=2sin£¨$\frac{¦Ð}{2}$x+$\frac{¦Ð}{6}$£© | D£® | y=2sin£¨$\frac{¦Ð}{2}$x+$\frac{5¦Ð}{6}$£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com