13£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬ÈôÖ±Ïßl£ºy=kx+2$\sqrt{3}$ÓëÍÖÔ²E½»ÓÚ²»Í¬µÄÁ½µãA¡¢B£®
£¨1£©Ö±ÏßMA£¬MBµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨Öµ£»ÈôÊÇ£¬ÇëÇó³ö¸Ã¶¨Öµ£®Èô²»ÊÇ£®Çë˵Ã÷ÀíÓÉ£®
£¨2£©Çó¡÷ABMµÄÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬Çó³öÍÖÔ²E£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®M£¨0£¬$\sqrt{3}$£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨4k2+3£©x2+16$\sqrt{3}kx$+36=0£¬ÓÉ´ËÀûÓøùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßµÄбÂʹ«Ê½ÄÜÇó³öÖ±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ£®
£¨2£©ÀûÓÃÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽ£¬ÄÜÇó³ö¡÷ABMµÄÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©ÓëyÖáµÄÕý°ëÖáÏཻÓÚµãM£¬µãF1£¬F2ΪÍÖÔ²µÄ½¹µã£¬ÇÒ¡÷MF1F2ÊDZ߳¤Îª2µÄµÈ±ßÈý½ÇÐΣ¬
¡àa=2£¬c=1£¬¡àb2=4-1=3£¬
¡àÍÖÔ²E£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£®¡àM£¨0£¬$\sqrt{3}$£©£®
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+2\sqrt{3}}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$£¬µÃ£¨4k2+3£©x2+16$\sqrt{3}kx$+36=0£¬
¡÷=$£¨16\sqrt{3}k£©^{2}-4¡Á36£¨4{k}^{2}+3£©$£¾0£¬½âµÃk£¾1.5»òk£¼-1.5£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=-\frac{16\sqrt{3}k}{4{k}^{2}+3}$£¬${x}_{1}{x}_{2}=\frac{36}{4{k}^{2}+3}$£¬
kMA•kMB=$\frac{{y}_{1}-\sqrt{3}}{{x}_{1}}•\frac{{y}_{2}-\sqrt{3}}{{x}_{2}}$=$\frac{{k}^{2}{x}_{1}{x}_{2}+\sqrt{3}k£¨{x}_{1}+{x}_{2}£©+3}{{x}_{1}{x}_{2}}$
=$\frac{\frac{36{k}^{2}}{4{k}^{2}+3}-\frac{48{k}^{2}}{4{k}^{2}+3}+3}{\frac{36}{4{k}^{2}+3}}$
=$\frac{48{k}^{2}-48{k}^{2}+9}{36}$=$\frac{1}{4}$£®
¡àÖ±ÏßMA£¬MBµÄбÂÊÖ®»ýΪ¶¨Öµ$\frac{1}{4}$£®
£¨2£©|AB|=$\sqrt{£¨1+{k}^{2}£©[£¨-\frac{16\sqrt{3}k}{4{k}^{2}+3}£©^{2}-4¡Á\frac{36}{4{k}^{2}+3}]}$=$\frac{4}{4{k}^{2}+3}$$\sqrt{3£¨1+{k}^{2}£©£¨4{k}^{2}-9£©}$£¬
M£¨0£¬$\sqrt{3}$£©µ½Ö±Ïßl£ºy=kx+2$\sqrt{3}$µÄ¾àÀëd=$\frac{\sqrt{3}}{\sqrt{{k}^{2}+1}}$£¬
¡à¡÷ABMµÄÃæ»ýS¡÷ABM=$\frac{1}{2}¡Ád¡Á|AB|$=$\frac{1}{2}¡Á\frac{\sqrt{3}}{\sqrt{{k}^{2}+1}}$¡Á$\frac{4}{4{k}^{2}+3}$$\sqrt{3£¨1+{k}^{2}£©£¨4{k}^{2}-9£©}$
=$\frac{6\sqrt{4{k}^{2}-9}}{4{k}^{2}+3}$=$\frac{6}{\sqrt{4{k}^{2}-9}+\frac{12}{\sqrt{4{k}^{2}-9}}}$¡Ü$\frac{6}{2\sqrt{12}}$=$\frac{\sqrt{3}}{2}$£¬
µ±ÇÒ½öµ±$\sqrt{4{k}^{2}-9}$=$\frac{12}{\sqrt{4{k}^{2}-9}}$£¬¼´k2=$\frac{21}{4}$ʱ£¬¡÷ABMµÄÃæ»ýÈ¡×î´óÖµ$\frac{\sqrt{3}}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ½Ö±ÏßµÄбÂÊÖ®»ýÊÇ·ñΪ¶¨ÖµµÄÅжÏÓëÇ󷨣¬¿¼²éÈý½ÇÐεÄÃæ»ýµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâ¸ùµÄÅбðʽ¡¢Î¤´ï¶¨Àí¡¢Ö±ÏßµÄбÂʹ«Ê½¡¢ÏÒ³¤¹«Ê½¡¢µãµ½Ö±Ïß¾àÀ빫ʽ¡¢»ù±¾²»µÈʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+1£©=-f£¨x£©£¬ÇÒf£¨x£©=$\left\{\begin{array}{l}{1£¬-1£¼x¡Ü0}\\{-1£¬0£¼x¡Ü1}\end{array}\right.$£¬ÔòÏÂÁк¯ÊýֵΪ1µÄÊÇ£¨¡¡¡¡£©
A£®f£¨2.5£©B£®f£¨f£¨2.5£©£©C£®f£¨f£¨1.5£©£©D£®f£¨2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Èçͼ£¬ABCDÊÇÖ±½ÇÌÝÐΣ¬AB¡ÎCD£¬AB=2CD=2£¬CD=BC£¬EÊÇABµÄÖе㣬DE¡ÍAB£¬FÊÇACÓëDEµÄ½»µã£®
£¨¢ñ£©Çósin¡ÏCADµÄÖµ£»
£¨¢ò£©Çó¡÷ADFµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®µ±kΪºÎֵʱ£¬¹ØÓÚxµÄ²»µÈʽ$\frac{2{x}^{2}+2kx+k}{4{x}^{2}+6x+3}$£¼1µÄ½â¼¯ÊÇR£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®º¯Êýf£¨x£©=lg£¨4-x2£©µÄ¶¨ÒåÓòΪ£¨-2£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®º¯Êýf£¨x£©=2sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬0¡Ü¦Õ¡Ü¦Ð£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬ÆäÖÐA£¬BÁ½µãÖ®¼äµÄ¾àÀëΪ5£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
A£®y=2sin£¨$\frac{¦Ð}{3}$x+$\frac{¦Ð}{6}$£©B£®y=2sin£¨$\frac{¦Ð}{3}$x+$\frac{5¦Ð}{6}$£©C£®y=2sin£¨$\frac{¦Ð}{2}$x+$\frac{¦Ð}{6}$£©D£®y=2sin£¨$\frac{¦Ð}{2}$x+$\frac{5¦Ð}{6}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÕýÈýÀâÖùABC-A1B1C1µÄÈýÊÓͼÈçͼËùʾ£®ÆäÖÐ×óÊÓÍ¼Ãæ»ýΪ$\frac{\sqrt{3}}{4}$£®¸©ÊÓͼµÄÃæ»ýΪ2£®DΪAA1Éϵĵ㣮ÇÒA1D=$\frac{1}{4}$£®ÆäÖÐFΪÏß¶ÎABÉϵĵ㣮
£¨I£©ÈôFΪABµÄÖе㣬֤Ã÷£ºB1D¡ÍÆ½ÃæA1CF£»
£¨¢ò£©Èô¶þÃæ½ÇA1-CF-AµÄÓàÏÒֵΪ$\frac{\sqrt{17}}{17}$£®ÅжϴËʱµãFµÄλÖã®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä³Ð£100ÃûѧÉúÆäÖп¼ÊÔÊýѧ³É¼¨µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£¬ÆäÖгɼ¨·Ö²¼Çø¼äÊÇ[50£¬60£©£¬[60£¬70£©£¬[70£¬80£©£¬[80£¬90£©£¬[90£¬100]£®
£¨1£©ÇóͼÖÐaµÄÖµ£»
£¨2£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼£¬¹À¼ÆÕâ´Î100ÃûѧÉúÊýѧ³É¼¨µÄƽ¾ùÊý¼°ÖÐλÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®×öÒ»¸öÔ²ÖùÐιøÂ¯£¬ÈÝ»ýΪ8¦Ð£¬Á½¸öµ×ÃæµÄ²ÄÁÏÿµ¥Î»Ãæ»ýµÄ¼Û¸ñΪ2Ôª£¬²àÃæµÄ²ÄÁÏÿµ¥Î»Ãæ»ýµÄ¼Û¸ñΪ4Ôª£¬µ±Ôì¼Û×îµÍʱ£¬¹øÂ¯µÄµ×Ãæ°ë¾¶Îª£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸