分析 求出f(x)和g(x)的最小值,令fmin(x)≥gmin(x),即可得出m的范围.
解答 解:f′(x)=$\frac{{x}^{2}-2x(x+1)}{{x}^{4}}$=$\frac{-x(x+2)}{{x}^{4}}$,
∴当1≤x≤2时,f′(x)<0,
∴f(x)在[1,2]上单调递减,
又g(x)在[1,4]上单调递增,
∴fmin(x)=f(2)=$\frac{3}{4}$,gmin(x)=g(1)=m,
∵对?x1∈[1,2],?x2∈[1,4],使得f(x1)≥g(x2),
∴fmin(x)≥gmin(x),即m≤$\frac{3}{4}$,
故答案为:(-∞,$\frac{3}{4}$]
点评 本题考查了函数的单调性与最值,函数存在性问题研究,属于中档题.
科目:高中数学 来源: 题型:解答题
| 二进制 | 000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
| 十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 二进制 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| 十六进制 | 8 | 9 | A | B | C | D | E | F |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 房型 | 特大套 | 大套 | 经济适用房 |
| 舒适 | 100 | 150 | x |
| 标准 | 300 | y | 600 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com