精英家教网 > 高中数学 > 题目详情
9.已知函数$f(x)=\frac{x+1}{x^2},g(x)={log_2}x+m$,若对?x1∈[1,2],?x2[1,4],使得f(x1)≥g(x2),则m的取值范围是(-∞,$\frac{3}{4}$].

分析 求出f(x)和g(x)的最小值,令fmin(x)≥gmin(x),即可得出m的范围.

解答 解:f′(x)=$\frac{{x}^{2}-2x(x+1)}{{x}^{4}}$=$\frac{-x(x+2)}{{x}^{4}}$,
∴当1≤x≤2时,f′(x)<0,
∴f(x)在[1,2]上单调递减,
又g(x)在[1,4]上单调递增,
∴fmin(x)=f(2)=$\frac{3}{4}$,gmin(x)=g(1)=m,
∵对?x1∈[1,2],?x2∈[1,4],使得f(x1)≥g(x2),
∴fmin(x)≥gmin(x),即m≤$\frac{3}{4}$,
故答案为:(-∞,$\frac{3}{4}$]

点评 本题考查了函数的单调性与最值,函数存在性问题研究,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如表提供了一种二进制与十六进制之间的转换方法,这也是实际使用的方法之一,利用这个对照表,十六进制与二进制之间就可以实现逐段转换了.求十六进制的C7A16转化为二进制数的算法.
二进制0000001001000110100010101100111
十六进制01234567
二进制10001001101010111100110111101111
十六进制89ABCDEF

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{ax}{{1+{x^2}}}+1$(a≠0).
(1)已知函数f(x)在点(0,1)处的斜率为1,求a的值;
(2)求函数f(x)的单调区间;
(3)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow{b}$|=1
(1)若$\overrightarrow{a}•\overrightarrow{b}$=1,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ为45°,求|$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an}的前n项和为Sn=2n2,{bn}为等比数列,且a1=b1,b2(a2-a1)=b1,求数列{an}和{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=-x2+ax-2
(Ⅰ)求函数f(x)在[t,t+2](t>0)上的最小值;
(Ⅱ)若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某房屋开发公司根据市场调查,计划在2017年开发的楼盘中设计“特大套”、“大套”、“经济适用房”三类商品房,每类房型中均有舒适和标准两种型号.某年产量如表:
房型特大套大套经济适用房
舒适100150x
标准300y600
若按分层抽样的方法在这一年生产的套房中抽取50套进行检测,则必须抽取“特大套”套房10套,“大套”15套.
(1)求x,y的值;
(2)在年终促销活动中,奖给了某优秀销售公司2套舒适型和3套标准型“经济适用型”套房,该销售公司又从中随机抽取了2套作为奖品回馈消费者.求至少有一套是舒适型套房的概率;
(3)今从“大套”类套房中抽取6套,进行各项指标综合评价,并打分如下:9.0    9.2    9.5    8.8    9.6    9.7
现从上面6个分值中随机的一个一个地不放回抽取,规定抽到数9.6或9.7,抽取工作即停止.记在抽取到数9.6或9.7所进行抽取的次数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.运行如图所示的程序框图,若输出的k的值为13,则判断框中可以填(  )
A.m>7?B.m≥7?C.m>8?D.m>9?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$(1,\frac{{2\sqrt{3}}}{3})$,左右焦点分别为F1、F2,圆x2+y2=2与直线x+y+b=0相交所得弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设Q是椭圆C上不在x轴上的一个动点,Q为坐标原点,过点F2作OQ的平行线交椭圆C于M、N两个不同的点
(1)试探究$\frac{|MN|}{{|OQ{|^2}}}$的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
(2)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

同步练习册答案