精英家教网 > 高中数学 > 题目详情
15.已知a满足方程x+lgx=4,b满足方程x+10x=4,函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(a+b)x+2,x≤0}\\{2,x>0}\end{array}\right.$,则关于x的方程f(x)=x的所有实数根之和是(  )
A.2B.0C.-3D.-1

分析 化简可得x=lg(4-x),令f(x)=x-lg(4-x),从而可得4-a=b,化简f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2,x≤0}\\{2,x>0}\end{array}\right.$,从而分类讨论求方程的实数根之和.

解答 解:∵x+10x=4,
∴10x=4-x,
∴x=lg(4-x),
令f(x)=x-lg(4-x),
∵a+lga-4=0,b-lg(4-b)=0,
∴4-a=b,
故a+b=4;
故f(x)=$\left\{\begin{array}{l}{{x}^{2}+4x+2,x≤0}\\{2,x>0}\end{array}\right.$,
当x>0时,f(x)=2=x,
当x≤0时,f(x)=x2+4x+2=x,
解得,x=-1或x=-2;
故f(x)=x的根为-1,-2,0;
故关于x的方程f(x)=x的所有实数根之和是-3,
故选:C.

点评 本题考查了方程的根与函数的零点的关系应用及分类讨论的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.若x,y为实数,且x2+2xy-y2=7,则x2+y2的最小值为$\frac{7\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若sinα=-$\frac{3}{5}$,α是第三象限角,则cos(α+$\frac{π}{4}$)=(  )
A.$-\frac{{7\sqrt{2}}}{10}$B.$\frac{{7\sqrt{2}}}{10}$C.$-\frac{{\sqrt{2}}}{10}$D.$\frac{{\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.(1-x+x23(1-2x24=a0+a1x+a2x2+…+a14x14,则a1+a3+a5+…+a13的值为-13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=Asin(ωx+φ)+2(A>0,ω>0,0<φ<2π)的图象如图所示,则ω=3,φ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x6(x+3)4=a10(x+1)10+a9(x+1)9+a8(x+1)8+…a1(x+1)+a0,则9a9+7a7+5a5+3a3+a1=(  )
A.64B.32C.-64D.-32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=|$\sqrt{x}$-ax-b|,a,b∈R,若对任意实数a,b,总存在实数x0∈[0,4]使得不等式f(x0)≥m,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知A,B,C是斜三角形ABC的三个内角,求证:
(1)tan$\frac{A}{2}$tan$\frac{B}{2}$+tan$\frac{B}{2}$tan$\frac{C}{2}$+tan$\frac{A}{2}$tan$\frac{C}{2}$=1;
(2)tan2A+tan2B+tan2C=tan2Atan2Btan2C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在二项式(3+2x)8的展开式中,最大的二项式系数是(  )
A.C${\;}_{8}^{3}$B.${C}_{8}^{4}$C.${C}_{8}^{5}$D.${C}_{8}^{6}$

查看答案和解析>>

同步练习册答案