精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=x+$\frac{m}{x}$,且f(1)=2.
(1)求m;
(2)函数f(x)在[1,+∞)上是增函数还是减函数?并证明理由.
(3)求f(x)在[1,+∞)上的最小值.

分析 (1)由代入法,计算即可得到m=1;
(2)函数f(x)在[1,+∞)上是增函数.运用单调性的定义证明,注意作差、变形和定符号和下结论几个步骤;
(3)由(2)的结论,计算即可得到最小值.

解答 解:(1)f(1)=1+m=2,
解得m=1;
(2)函数f(x)在[1,+∞)上是增函数.
由f(x)=x+$\frac{1}{x}$,设1≤x1<x2,则f(x1)-f(x2
=x1+$\frac{1}{{x}_{1}}$-x2-$\frac{1}{{x}_{2}}$=(x1-x2)(1-$\frac{1}{{x}_{1}{x}_{2}}$),
由1≤x1<x2,可得x1-x2<0,x1x2>1,
1-$\frac{1}{{x}_{1}{x}_{2}}$>0,即有f(x1)-f(x2)<0,
则函数f(x)在[1,+∞)上是增函数;
(3)由f(x)在[1,+∞)上递增,
可得f(1)为最小值为2.

点评 本题考查函数的最值的求法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.若$\overrightarrow{OA}$=(2,8),$\overrightarrow{OB}$=(-7,2),则$\frac{1}{3}\overrightarrow{AB}$=(-3,-2),$|{\frac{1}{3}\overrightarrow{AB}}|$=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设关于x的不等式(k2-2k-3)x2+(k+1)x+1>0(k∈R)的解集为M.
(1)若1∈M,求实数k的取值范围.
(2)若M=R,求实数k的取值范围.
(3)是否存在实数k,满足:“对任意n∈N,都有n∈M,对任意m∈Z-,都有m∉M”?若存在,试求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若x>0,x$\sqrt{1-{x}^{2}}$的最大值为$\frac{1}{2}$,此时x=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求函数f(x)=$\sqrt{x}$+x在[2,+∞]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知圆C:x2+y2-2x-4y-20=0,直线l:(2m+1)x+(m+1)y-7m-4=0.
(1)求证:直线l与圆C相交;
(2)计算直线l被圆C截得的最短的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)对定义域I内任意实数x,都存在常数a,b满足f(2a-x)+f(x)=2b成立,则称函数f(x)的图象关于点(a,b)对称.
(1)已知函数f(x)=$\frac{{x}^{2}+mx+m}{x}$的图象关于点(0,1)对称,求证:m=1;
(2)在(1)的结论下,已知g(x)=-x2+kx+1,若对于任意的t∈(0,+∞)和x∈(0,+∞),都有g(x)<f(x)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若($\root{4}{2a-1}$)4+$\frac{1}{\root{3}{(a-3)^{3}}}$有意义,则a的取值范围是[$\frac{1}{2}$,3)∪(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:$\sqrt{(x-2)^{2}}$+$\root{6}{(x+2)^{6}}$.

查看答案和解析>>

同步练习册答案