精英家教网 > 高中数学 > 题目详情
13.如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC=1,E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面EDB;
(2)求二面角F-DE-B的正弦值.

分析 (1)连结AC,AC交BD于点G,连结EG,以D为原点,分别以$\overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DP}$的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系D-xyz,利用向量法能证明PA∥平面EDB.
(2)求出平面EFD的一个法向量和平面DEB的法向量,利用向量法能求出二面角F-DE-B的正弦值.

解答 证明:(1)连结AC,AC交BD于点G,连结EG.
以D为原点,分别以$\overrightarrow{DA},\overrightarrow{DC},\overrightarrow{DP}$的方向为x轴,y轴,z轴的正方向,建立空间直角坐标系D-xyz,
依题意得$A(1,0,0),P(0,0,1),E(0,\frac{1}{2},\frac{1}{2})$.
因为底面ABCD是正方形,所以点G是此正方形的中心,
故点G的坐标为$(\frac{1}{2},\frac{1}{2},0)$,且$\overrightarrow{PA}=(1,0,-1),\overrightarrow{EG}=(\frac{1}{2},0,-\frac{1}{2})$.
所以$\overrightarrow{PA}=2\overrightarrow{EG}$,即PA∥EG,而EG?平面EDB,且PA?平面EDB,
因此PA∥平面EDB.----------------(6分)
解:(2)$B(1,1,0),\overrightarrow{PB}=(1,1,-1)$,又$\overrightarrow{DE}=(0,\frac{1}{2},\frac{1}{2})$,
故$\overrightarrow{PB}•\overrightarrow{DE}=0$,所以PB⊥DE.
由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD.----------------(7分)
所以平面EFD的一个法向量为$\overrightarrow{PB}=(1,1,-1)$.
$\overrightarrow{DE}=(0,\frac{1}{2},\frac{1}{2}),\overrightarrow{DB}=(1,1,0)$,
不妨设平面DEB的法向量为$\overrightarrow a=(x,y,z)$
则$\left\{\begin{array}{l}\overrightarrow a•\overrightarrow{DE}=\frac{1}{2}(y+z)=0\\ \overrightarrow a•\overrightarrow{DB}=x+y=0\end{array}\right.$
不妨取x=1则y=-1,z=1,即$\overrightarrow a=(1,-1,1)$----------------(10分)
设所求二面角F-DE-B的平面角为θ$cosθ=-\frac{{\overrightarrow a•\overrightarrow{PB}}}{{|\overrightarrow a||\overrightarrow{PB}|}}=\frac{1}{3}$,
因为θ∈[0,π],所以$sinθ=\frac{{2\sqrt{2}}}{3}$.
二面角F-DE-B的正弦值大小为$\frac{{2\sqrt{2}}}{3}$.----------------(12分)

点评 本题考查线面平行的证明,考查二面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,A,B分别为椭圆C的左、右顶点,F1,F2为其左、右焦点.
(Ⅰ)若点Q为椭圆C的上顶点,求△QF1F2内切圆的面积;
(Ⅱ)若斜率为k,过定点F2的直线l与椭圆C交于M,N两点,试证明:直线AM、直线BN与直线x=4三线必定共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow a$表示“向东航行3km”,向量$\overrightarrow b$表示“向南航行3km,则$\overrightarrow a$+$\overrightarrow b$表示(  )
A.向东南航行6kmB.向东南航行3$\sqrt{2}$kmC.向东北航行3$\sqrt{2}$kmD.向东北航行6km

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.(文)已知向量$\overrightarrow{a}$=(1,-1),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=($\sqrt{2}$cosα,$\sqrt{2}$sinα)(a∈R),实数m,n满足m$\overrightarrow{a}$+n$\overrightarrow{b}$=2$\overrightarrow{c}$,则(m-4)2+n2的最大值为(  )
A.4B.$20+8\sqrt{2}$C.32D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ln(1+x)-$\frac{ax}{x+1}$,x∈R.
(1)若曲线y=f(x)在点(0,f(0))处的切线的斜率为5,求a的值;
(2)若函数f(x)的最小值为-a,求a的值;
(3)当x>-1时,(1+x)ln(1+x)+(lnk-1)x+lnk>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.安排一张有5个独唱节目和3个合唱节目的节目单,要求任何2个合唱节目不相邻而且不排在第一个节目,那么不同的节目单有(  )
A.7200种B.1440种C.1200种D.2880种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等比数列{an}中,a1=2,an=2an-1(n≥2),等差数列{bn}中,b1=2,点P(bn,bn+1)在一次函数y=x+2的图象上.
(Ⅰ)求数列{an},{bn}的通项an和bn
(Ⅱ)设cn=an•bn,求数列{cn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex,g(x)=mx2+ax+b,其中m,a,b∈R,e=2.71828…为自然对数的底数.
(I)函数h(x)=xf (x),当a=l,b=0时,若函数h(x)与g(x)具有相同的单调区间,求m的值;
(II)记F(x)=f(x)-g(x).当a=2,m=0时,若函数F(x)在[-1,2]上存在两个不同的零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:解答题

已知直线,半径为的圆相切,圆心轴上且在直线的右上方.

(1)求圆的方程;

(2)若直线过点且与圆交于两点(轴上方,B在轴下方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案