精英家教网 > 高中数学 > 题目详情
1.已知点P在抛物线y=x2上,点Q在圆(x-4)2+(y+$\frac{1}{2}$)2=1上,则|PQ|的最小值为(  )
A.$\frac{3\sqrt{5}}{2}$-1B.$\frac{3\sqrt{3}}{2}$-1C.2$\sqrt{3}$-1D.$\sqrt{10}$-1

分析 设P(t,t2),求出|PC|2=t4+2t2-8t+16+$\frac{1}{4}$,构造函数,利用函数的导数求解函数的最小值,由此能求出|PQ|的最小值.

解答 解:∵点P在抛物线y=x2上,∴设P(t,t2),
∵圆(x-4)2+(y+$\frac{1}{2}$)2=1的圆心C(4,-$\frac{1}{2}$),半径r=1,
∴|PC|2=(4-t)2+($-\frac{1}{2}$-t22=t4+2t2-8t+16+$\frac{1}{4}$,
令y=|PC|2=t4+2t2-8t+16+$\frac{1}{4}$,y′=4t3+4t-8=0,可得t3+t-2=0,解得t=1,当t<1时,y′<0,当t>1,y′>0,可知函数在t=1时取得最小值,|PC|2min=$\frac{45}{4}$
|PQ|的最小值=$\frac{3\sqrt{5}}{2}-1$.
故选:A.

点评 本题考查的知识要点:两点间的距离公式的应用,函数的导数的应用,考查圆的方程和抛物线方程的应用,及相关的运算问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若m=${∫}_{-1}^{1}$(6x2+tanx)dx,且(2x+$\sqrt{3}$)m=a0+a1x+a2x2+…+amxm,则(a0+a2+…+am2-(a1+..+am-12的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在正方形ABCD中,E,F分别为BC,CD的中点,H为EF的中点,沿AE,EF,FA将正方形折起,使B,C,D重合于点O,构成四面体,则在四面体A-OEF中,下列说法不正确的序号是②.
①AO⊥平面EOF
②AH⊥平面EOF
③AO⊥EF
④AF⊥OE
⑤平面AOE⊥平面AOF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}的公差为2,若a2,a4,a8成等比数列,设Sn是数列{an}的前n项和,则S10的值为(  )
A.110B.90C.55D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(x2+2x-1)5的展开式中,x3的系数为40(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+1,g(x)=2alnx+1(a∈R)
(1)求函数h(x)=f(x)-g(x)的极值;
(2)当a=e时,是否存在实数k,m,使得不等式g(x)≤kx+m≤f(x)恒成立?若存在,请求实数k,m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=ax-x2-lnx存在极值,若这些极值的和大于5+ln2,则实数a的取值范围为(  )
A.(-∞,4)B.(4,+∞)C.(-∞,2)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB=60°,AB=2,AD=1.
(1)求证:PA⊥BD;
(2)若∠PCD=45°,求点D到平面PBC的距离h.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\left\{\begin{array}{l}{3x+5,(x<1)}\\{lo{g}_{\frac{1}{2}}x-1,(x≥1)}\end{array}\right.$,则f(f(2$\sqrt{2}$))=-$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案