分析 (I)由题意可得:an=a1+2(n-1),${b}_{2}^{2}$=b1b3,$({a}_{1}+6)^{2}$=a1(a1+24),解得a1,可得an.设等比数列{bn}的公比为q,则q=$\frac{{b}_{2}}{{b}_{1}}$=$\frac{{a}_{4}}{{a}_{1}}$.可得数列{bn}的前项和Bn.
(Ⅱ)由(I)可得:Sn=n2+2n.因此$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.利用“裂项求和”即可得出.
解答 解:(I)由题意可得:an=a1+2(n-1),${b}_{2}^{2}$=b1b3,$({a}_{1}+6)^{2}$=a1(a1+24),解得a1=3.
∴an=3+2(n-1)=2n+1.
设等比数列{bn}的公比为q,则q=$\frac{{b}_{2}}{{b}_{1}}$=$\frac{{a}_{4}}{{a}_{1}}$=$\frac{9}{3}$=3.
∴数列{bn}的前项和Bn=$\frac{3({3}^{n}-1)}{3-1}$=$\frac{3}{2}({3}^{n}-1)$.
(Ⅱ)由(I)可得:Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
∴$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}+2n}$=$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
∴数列$\{\frac{1}{S_n}\}$的前项和为Tn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{2}$ | B. | -$\frac{7}{2}$ | C. | $\frac{7}{2}$或-$\frac{7}{2}$ | D. | 7或-7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com