精英家教网 > 高中数学 > 题目详情
20.执行如图所示的程序框图.若输出的结果为3,则可输入的实数x的个数为(  )
A.lB.2C.3D.4

分析 由已知中的程序框图可知:该程序的功能是利用条件结构计算并输出分段函数y=$\left\{\begin{array}{l}{{x}^{2}-1}&{x≤1}\\{{log}_{2}^{x}}&{x>1}\end{array}\right.$的值,分类讨论满足输出的结果为3的x值,可得答案.

解答 解:由已知中的程序框图可知:该程序的功能是利用条件结构计算并输出分段函数y=$\left\{\begin{array}{l}{{x}^{2}-1}&{x≤1}\\{{log}_{2}^{x}}&{x>1}\end{array}\right.$的值,
当x≤1时,由x2-1=3得:x=-2或2(舍去),
当x>1时,由log2x=3得:x=8,
综上可得:可以输入的x的个数为2个,
故选:B.

点评 本题考查的知识点是循环框图,分段函数的应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴的长是短轴长的两倍,焦距为2$\sqrt{3}$.
(1)求椭圆C的标准方程
(2)若直线l:y=kx+m(m≠0)与椭圆C相交于不同两点M,N,直线OM,MN,ON的斜率存在且依次成等比数列,求k的值及m的取值范围(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}中,a1=1,a2=2,数列{bn}满足bn=an+1+(-1)nan,n∈N*
(Ⅰ)若数列{an}是等比数列,an=32,求项数n的值;
(Ⅱ)若数列{bn}是常数列,求数列{an}的前2016项的和S2016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.P为△ABC内部一点,且满足|PB|=2|PA|=2,$∠APB=\frac{5π}{6}$,且$2\overrightarrow{PA}+3\overrightarrow{PB}+4\overrightarrow{PC}=\overrightarrow 0$,则△ABC的面积为(  )
A.$\frac{9}{8}$B.$\frac{4}{3}$C.1D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.2015年山东省东部地区土豆种植形成初步规模,出口商在各地设置了大量的代收点.已知土豆收购按质量标准可分为四个等级,某代收点对等级的统计结果如下表所示:
等级特级一级二级三级
频率0.302mm0.10
现从该代售点随机抽取了n袋土豆,其中二级品为恰有40袋.
(Ⅰ)求m、n的值;
(Ⅱ)利用分层抽样的方法从这n袋土豆中抽取10袋,剔除特级品后,再从剩余土豆中任意抽取两袋,求抽取的两袋都是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}是等比数列,且a3=1,a5a6a7=8,则a9=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.定义在R上的函数f(x)满足f(x)=e2x+x2-ax,函数g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-b)x+b(其中a,b为常数),若函数f(x)在x=0处的切线与y轴垂直.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数g(x)的单调区间;
(Ⅲ)若s,t,r满足|s-r|<|t-r|恒成立,则称s比t更靠近,在函数g(x)有极值的前提下,当x≥1时,$\frac{e}{x}$比ex-1+b更靠近,试求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图是计算1+3+5+…+99的程序框图,
(1)在框图的空白处填写适当的内容;
(2)用UNTIL语句编写程序.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的公差d=2,其前项和为Sn,且等比数列{bn}满足b1=a1,b2=a4,b3=a13
(Ⅰ)求数列{an}的通项公式和数列{bn}的前项和Bn
(Ⅱ)记数列$\{\frac{1}{S_n}\}$的前项和为Tn,求Tn

查看答案和解析>>

同步练习册答案