精英家教网 > 高中数学 > 题目详情
5.如图,已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=3,AC=4,B1C⊥AC1
(1)求AA1的长.
(2)在线段BB1存在点P,使得二面角P-A1C-A大小的余弦值为$\frac{\sqrt{3}}{3}$,求$\frac{BP}{{BB}_{1}}$的值.

分析 (1)建立空间直角坐标系,根据直线垂直的性质定理进行求解即可.
(2)建立空间直角坐标系,求平面的法向量,利用向量法进行求解.

解答 解:(1)以AB,AC,AA1 所在直线为x,y,z 轴建立如图所示的空间直角坐标系,设AA1=t,
则A(0,0,0),C1(0,4,t),B1(3,0,t),C(0,4,0),
∴$\overrightarrow{A{C}_{1}}$=(0,4,t),$\overrightarrow{{B}_{1}C}$=(-3,4,-t),
∵B1C⊥AC1,∴$\overrightarrow{A{C}_{1}}$•$\overrightarrow{{B}_{1}C}$=0,即16-t2=0,解得t=4,即AA1的长为4.     …3分                            
(2)设P(3,0,m),
又A(0,0,0),C(0,4,0),A1(0,0,4)
,$\overrightarrow{{A}_{1}C}$=(0,4,-4),$\overrightarrow{{A}_{1}P}$=(3,0,m-4),且0≤m≤4,
设$\overrightarrow{n}$=(x,y,z)为平面A1CA的法向量   
∴$\overrightarrow{n}$$•\overrightarrow{{A}_{1}C}$=0,$\overrightarrow{n}$$•\overrightarrow{{A}_{1}P}$=0,
即$\left\{\begin{array}{l}{4y-4z=0}\\{3x+(m-4)z=0}\end{array}\right.$,取z=1,解得y=1,x=$\frac{4-m}{3}$,
∴$\overrightarrow{n}$=($\frac{4-m}{3}$,1,1)为平面PA1C的一个法向量.                         …6分
又知$\overrightarrow{AB}$=(3,0,0)为平面A1CA的一个法向量,
则cos<$\overrightarrow{n}$,$\overrightarrow{AB}$>=$\frac{4-m}{3•\sqrt{1+1+(\frac{4-m}{3})^{2}}}$
∵二面角 大小的余弦值为$\frac{\sqrt{3}}{3}$,∴$\frac{4-m}{3•\sqrt{1+1+(\frac{4-m}{3})^{2}}}$=$\frac{\sqrt{3}}{3}$,
解得m=1,
∴$\frac{BP}{{BB}_{1}}$=$\frac{1}{4}$:…10分

点评 本小题主要考直线垂直的应用和二面角的求解,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.2015年山东省东部地区土豆种植形成初步规模,出口商在各地设置了大量的代收点.已知土豆收购按质量标准可分为四个等级,某代收点对等级的统计结果如下表所示:
等级特级一级二级三级
频率0.302mm0.10
现从该代售点随机抽取了n袋土豆,其中二级品为恰有40袋.
(Ⅰ)求m、n的值;
(Ⅱ)利用分层抽样的方法从这n袋土豆中抽取10袋,剔除特级品后,再从剩余土豆中任意抽取两袋,求抽取的两袋都是一等品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的方程:x2+y2-2x-4y+m=0.
(1)若圆C与直线l:x+2y-4=0相交于M,N两点,且|MN|=$\frac{4\sqrt{5}}{5}$,求m的值;
(2)在(1)条件下,是否存在直线l:x-2y+c=0,使得圆上有四点到直线l的距离为$\frac{\sqrt{5}}{5}$,若存在,求出c的范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四棱锥P一ABCD,如图所示,其中平面PAD⊥平面ABCD,PA⊥AD,PA=AB=BC=AC=4,线段AC被线段BD平分.
(I)求证:BD⊥平面PAC;
(Ⅱ)若∠ACD=30°,求二面角A-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,CD⊥BD,PB⊥平面ABCD,PB=AB=AD=3,E是线段PA上一点,且$\frac{PE}{EA}$=λ.
(I)若PC∥平面BDE,求实数λ的值.
(Ⅱ)在(I)的条件下,求二面角E-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的公差d=2,其前项和为Sn,且等比数列{bn}满足b1=a1,b2=a4,b3=a13
(Ⅰ)求数列{an}的通项公式和数列{bn}的前项和Bn
(Ⅱ)记数列$\{\frac{1}{S_n}\}$的前项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设n∈N+,a,b∈R,函数f(x)=$\frac{alnx}{x^n}$+b,己知曲线y=f(x)在点(1,0)处的切线方程为y=x-l.
(I)求a,b;
(Ⅱ)求f(x)的最大值;
(Ⅲ)设c>0且c≠l,已知函数g(x)=logcx-xn至少有一个零点,求c的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示的一个几何体A1D1-ABCD中,底面ABCD为一个等腰梯形,AD∥BC且AD=$\sqrt{2}$,BC=2$\sqrt{2}$,对角线AC⊥BD,且交于点O,正方形ADD1A1垂直于底面ABCD.
(1)试判断D1O是否平行于平面AA1B,并证明你的结论;
(2)求二面角B-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{{e}^{x}},x≤0}\\{1,0<x<e}\\{lnx,x≥e}\end{array}\right.$,则f(x)的最小值是1.

查看答案和解析>>

同步练习册答案