精英家教网 > 高中数学 > 题目详情
18.在平行四边形ABCD中,AD=a,AB=2a,∠ADC=60°,M,N分别为AB,CD的中点,以MN为折痕把平行四边形折成三棱柱AMB-DNC的两个侧面,求三棱柱体积的最大值.

分析 由A到DC的距离为折叠后棱柱的高,再由公式$S=\frac{1}{2}absinC$求出底面积的最大值得答案.

解答 解:三棱柱的高是N到底面AMB的距离,等于AD•sin60°=$\frac{\sqrt{3}}{2}a$,
要使三棱柱体积最大,则底面AMB的面积最大,由于AM=MB=a,
${S}_{△AMB}=\frac{1}{2}{a}^{2}sin∠AMB$,当sin∠AMB=1时,△AMB的面积S最大,等于$\frac{1}{2}{a}^{2}$.
∴三棱柱体积的最大值为$\frac{1}{2}{a}^{2}•\frac{\sqrt{3}}{2}a=\frac{\sqrt{3}}{4}{a}^{3}$.

点评 本题考查了棱柱体积的求法,训练了利用三角形面积公式$S=\frac{1}{2}absinC$求面积,关键是明确棱柱的高为定值,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{x}{lnx}$+ax,x>1.
(Ⅰ)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(Ⅱ)若a=2,求函数f(x)的极小值;
(Ⅲ)若方程(2x-m)lnx+x=0在(1,e]上有两个不等实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+ax+b,g(x)=2x+a(a,b∈R),且函数f(x)与g(x)的图象至多有一个公共点.
(Ⅰ)证明:当x≥0时,f(x)≤(x+b)2
(Ⅱ)若不等式f(a)-f(b)≥L(a2-b2)对题设条件中的a,b总成立,求L的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*),则a7=13;若a2017=m,则数列{an}的前2015项和是m-1(用m表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.定义:曲线C上的点到点P的距离的最小值称为曲线C到点P的距离.已知圆C:x2+y2-2x-2y-6=0到点P(a,a)的距离为$\sqrt{2}$,则实数a的值为-2,0,2或4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从4名男生和6名女生中各选2人参加跳绳比赛,则男生甲和女生乙至少有一个被选中的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=0,且|$\overrightarrow{AB}$|=3,|$\overrightarrow{BC}$|=4,M为线段BC上一点,且$\overrightarrow{AM}=λ\frac{{\overrightarrow{AB}}}{{|\overrightarrow{AB}|}}+μ\frac{{\overrightarrow{AC}}}{{|\overrightarrow{AC}|}}$(λ,μ∈R),则λμ的最大值为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{4}+{y}^{2}=1$,点D为椭圆C的左顶点,对于正常数λ,如果存在过点M(x0,0)(-2<x0<2)的直线l与椭圆C交于A,B两点,使得S△AOB=λS△AOD,则称点M为椭圆C的“λ分点“.
(1)判断点M(1,0)是否为椭圆C的“1分点“,并说明理由;
(2)证明:点M(1,0)不是椭圆C的“2分点”;
(3)如果点M为椭圆C的“2分点“,写出x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若实数x,y满足不等式组$\left\{\begin{array}{l}x+y-1≥0\\ 2x-y-2≤0\\ x-2y+2≥0\end{array}\right.$,则x-3y的最小值为-4,点P(x,y)所组成的平面区域的面积为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案