精英家教网 > 高中数学 > 题目详情
空间直角坐标系中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB与CD的位置关系是(  )
A、平行B、垂直
C、相交但不垂直D、无法确定
考点:向量的数量积判断向量的共线与垂直
专题:空间向量及应用
分析:由已知得
AB
=(-2,-2,2),
CD
=(1,1,-1),
AB
=-2
CD
,从而得到直线AB与CD平行.
解答: 解:∵空间直角坐标系中,
A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),
AB
=(-2,-2,2),
CD
=(1,1,-1),
AB
=-2
CD

∴直线AB与CD平行.
故选:A.
点评:本题考查两直线的位置关系的判断,是基础题,解题时要认真审题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知y=
1
3
x3+bx2+(b+2)x+3是R上的单调增函数,则b的取值范围是(  )
A、-1<b<2
B、-1≤b≤2
C、b<-1或b>2
D、b≤-2或b≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

217与155的最大公约数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5)4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3
(1)绘制频率分布表;(结果用分数表示)
(2)根据样本的频率分布,估计大于或等于31.5的数据的可能性是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

若P点是椭圆
x2
9
+
y2
5
=1上任意一点,F为椭圆的一个焦点,则|PF|的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-3a2x2-2ax,x∈[0,1],且a≥1.
(Ⅰ)判断函数f(x)的单调性并予以证明;
(Ⅱ)若函数f(x)的值域为A,且[-4,-3]⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

当0≤x≤2时,函数y=4x+2×2x+1+1的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(1),f(-3)的大小关系是(  )
A、f(1)>f(-3)>f(-2)
B、f(1)>f(-2)>f(-3)
C、f(1)<f(-3)<f(-2)
D、f(1)<f(-2)<f(-3)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x+
π
6
)+sin(2x-
π
6
)+cos2x-sin2x+a的在区间[0,
π
2
]上的最小值为0.
(Ⅰ)求常数a的值;
(Ⅱ)当x∈[0,π]时,求使f(x)≥0成立的x的集合.

查看答案和解析>>

同步练习册答案