精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的单调区间,并指出其增减性;
(2)若关于x的方程至少有三个不相等的实数根,求实数a的取值范围.

(1)递增区间为[1,2),[3,+∞),递减区间为(-∞,1),[2,3).
(2) a∈[-1,-]

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)若定义在上的函数同时满足下列三个条件:
①对任意实数均有成立;
; ③当时,都有成立。
(1)求的值;
(2)求证:上的增函数
(3)求解关于的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.(12分)已知函数在R上为奇函数,.
(I)求实数的值;
(II)指出函数的单调性.(不需要证明)
(III)设对任意,都有;是否存在的值,使最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知二次函数f(x)满足条件:,     
(1)求
(2)讨论  的解的个数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且.
(Ⅰ)判断的奇偶性并说明理由;    
(Ⅱ)判断在区间上的单调性,并证明你的结论;
(Ⅲ)若在区间上,不等式恒成立,试确定实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,当时,
(1)求的解析式;
(2)写出的单调区间.(不要求证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
设函数.
(1)求证:不论为何实数总为增函数;
(2)确定的值,使为奇函数及此时的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数(a为实数).⑴若a<0,用函数单调性定义证明:上是增函数;⑵若a=0,的图象与的图象关于直线y=x对称,求函数的解析式.

查看答案和解析>>

同步练习册答案