分析 (1)由题意可得sinα=-$\sqrt{3}$cosα代入sin2α+cos2α=1结合α为第二象限可解得cosα,进而可得sinα;
(2)由tanα=-$\sqrt{3}$<0可知α为二或四象限角,当α为第二象限角时,由(1)可得结果,当α为第四象限角时,同理可得.
解答 解:(1)∵tanα=-$\sqrt{3}$,∴$\frac{sinα}{cosα}$=-$\sqrt{3}$,
∴sinα=-$\sqrt{3}$cosα代入sin2α+cos2α=1
结合α为第二象限可解得cosα=-$\frac{1}{2}$,
∴sinα=-$\sqrt{3}$cosα=$\frac{\sqrt{3}}{2}$;
(2)由tanα=-$\sqrt{3}$<0可知α为二或四象限角,
当α为第二象限角时,由(1)可得cosα=-$\frac{1}{2}$,sinα=$\frac{\sqrt{3}}{2}$;
当α为第四象限角时,同理可得cosα=$\frac{1}{2}$,sinα=-$\frac{\sqrt{3}}{2}$
点评 本题考查同角三角函数基本关系,涉及分类讨论的思想和方程组的解法,属基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 925J | B. | 850J | C. | 825J | D. | 800J |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com