分析 由an+1=2an+1,可得an+1+1=2(an+1),利用等比数列的通项公式可得an+1,再利用“错位相减法”与等比数列的求和公式即可得出.
解答 解:∵an+1=2an+1,
∴an+1+1=2(an+1),
∴数列{an+1}是等比数列,公比为2,首项为2.
∴an+1=2n,
∴bn=n(an+1)=n•2n,
∴数列{bn}的前n项和Sn=2+2×22+3×23+…+n•2n,
2Sn=22+2×23+…+(n-1)•2n+n•2n+1,
∴-Sn=2+22+…+2n-n•2n+1=$\frac{2({2}^{n}-1)}{2-1}$-n•2n+1,
∴Sn=(n-1)2n+1+2.
故答案为:(n-1)2n+1+2.
点评 本题考查了等比数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | -1 | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{96}{125}$ | B. | $\frac{48}{125}$ | C. | $\frac{36}{125}$ | D. | $\frac{24}{125}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com