精英家教网 > 高中数学 > 题目详情
4.求和:2+1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$.

分析 数列为等比数列,根据等比数列的求和公式进行求解即可.

解答 解:所求的和为等比数列{$\frac{1}{{2}^{n}}$}的前n+2项和,
首项为2,公比q=$\frac{1}{2}$,
则S=$\frac{2[1-(\frac{1}{2})^{n+2}]}{1-\frac{1}{2}}$=4-($\frac{1}{2}$)n

点评 本题主要考查数列的求和,根据条件利用等比数列的前n项和公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知数列{an}是各项均为正数的等差数列,且lga1,lga2,lga4成等差数列,若bn=$\frac{1}{{a}_{{2}^{n}}}$(n=1,2,3,…),求证:数列{bn}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l:y=kx+1(k≠0)与椭圆3x2+y2=a相交于A、B两个不同的点,记l与y轴的交点为C.
(Ⅰ)若k=1,且|AB|=$\frac{\sqrt{10}}{2}$,求实数a的值;
(Ⅱ)若$\overrightarrow{AC}$=2$\overrightarrow{CB}$,求△AOB面积的最大值,及此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某商场为回馈大客户,开展摸球中奖活动,规则如下:从一个装有质地和大小完全相同的4个白球和一个红球的摸奖箱中随机摸出一球,若摸出红球,则摸球结束,若摸出白球(不放回),则向摸奖箱中放入一个红球后继续进行下一轮摸球,直到摸出红球结束,若大客户在第n轮(n∈N*)摸到红球,则可获得$10000•{(\frac{1}{2})^{n-1}}$的奖金(单位:元)
(Ⅰ)求某位大客户在一次摸球中奖活动中至少获得2500元奖金的概率;
(Ⅱ)设随机变量ξ为某位大客户所能获得的奖金,求随机变量ξ的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知a≥0,函数f(x)=(x2-2ax)ex在[-1,1]是减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=4x和直线l:y=x+4.
(1)求抛物线C上一点到直线l的最短距离;
(2)设M为l上任意一点,过M作两条不平行于x轴的直线,若这两条直线与抛物线C都只有一个公共点,这两个公共点分别记为A,B,求△MAB的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}是a3=$\frac{1}{64}$,公比q=$\frac{1}{4}$的等比数列,设bn+2=3${log}_{\frac{1}{4}}$an(n∈N*),数列{cn}满足cn=anbn
(1)求证:数列{bn}是等差数列;
(2)求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.三对夫妻排成一排照相,仅有一对夫妻相邻的排法种数为288.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.用数学归纳法证明(n2-1)+2(n2-22)+…+n(n2-n2)=$\frac{1}{4}$n2(n2-1)(n∈N+

查看答案和解析>>

同步练习册答案