精英家教网 > 高中数学 > 题目详情
14.如图,在多面体ABCDE中,DB⊥平面ABC,AE⊥平面ABC,且△ABC是的边长为4的等边三角形,AE=2,CD与平面ABDE所成角的余弦值为$\frac{\sqrt{10}}{4}$,F是线段CD上一点.
(Ⅰ)若F是线段CD的中点,证明:平面CDE⊥面DBC;
(Ⅱ)求二面角B-EC-D的平面角的正弦值.

分析 (Ⅰ)取AB中点O,连结OC,OD,取ED的中点为M,以O为原点,OC为x轴,OB为y轴,OM为z轴,建立空间直角坐标系,利用向量法能证明平面CDE⊥平面DBC.
(Ⅱ)求出平面DEC 的一个法向量和平面BCE的一个法向量,利用向量法能求出二面角B-EC-D的平面角的正弦值.

解答 证明:(Ⅰ)取AB中点O,连结OC,OD,
∵DB⊥平面ABC,DB?平面ABDE,
∴平面ABDE⊥平面ABC,
∵△ABC是等边三角形,∴OC⊥AB,
又OC?平面ABC,平面ABDE∩平面ABC=AB,
∴OC⊥平面ABD,
∴OD是CD在平面ABDE上的射影,∠CDO是CD与平面ABDE所成角,
∵CD与平面ABDE所成角的余弦值为$\frac{\sqrt{10}}{4}$,
∴CD与平面ABDE所成角的正弦值为$\frac{\sqrt{6}}{4}$,∴sin$∠CDO=\frac{OC}{CD}=\frac{\sqrt{6}}{4}$,
∵OC=2$\sqrt{3}$,∴CD=4$\sqrt{2}$,BD=4,
取ED的中点为M,以O为原点,OC为x轴,OB为y轴,OM为z轴,建立空间直角坐标系,
则A(0,-2,0),B(0,2,0),C(2$\sqrt{3}$,0,0),D(0,2,4),E(0,-2,2),F($\sqrt{3}$,1,2),
∴$\overrightarrow{EF}$=($\sqrt{3},3,0$),$\overrightarrow{BC}$=(2$\sqrt{3}$,-2,0),$\overrightarrow{BD}$=(0,0,4),
∴$\overrightarrow{EF}•\overrightarrow{BC}=6-6+0=0$,$\overrightarrow{EF}•\overrightarrow{BD}=0$,
∴EF⊥BC,EF⊥BD,
∵DB,BC?平面DBC,且DB∩BC=B,
∴∴EF⊥平面DBC,又EF?平面BDF,
∴平面CDE⊥平面DBC.
解:(Ⅱ)由(Ⅰ)知,当F是线段CD的中点时,得BF⊥平面DEC,
又$\overrightarrow{BF}$=($\sqrt{3},-1,2$),
则可取平面DEC 的一个法向量$\overrightarrow{m}$=$\overrightarrow{BF}$=($\sqrt{3},-1,2$),
设平面BCE的一个法向量$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{BC}$=(2$\sqrt{3}$,-2,0),$\overrightarrow{DC}$=(2$\sqrt{3}$,2,-2),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BC}=2\sqrt{3}x-2y=0}\\{\overrightarrow{n}•\overrightarrow{EC}=2\sqrt{3}x+2y-2z=0}\end{array}\right.$,
取x=1,得$\overrightarrow{n}$=(1,$\sqrt{3},2\sqrt{3}$),
则cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{2\sqrt{2}×4}$=$\frac{\sqrt{6}}{4}$,
sin<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\sqrt{10}}{4}$,
∴二面角B-EC-D的平面角的正弦值为$\frac{\sqrt{10}}{4}$.

点评 本题考查面面垂直的证明,考查二面角的正弦值的求法,考查推理论证能力、运算求解能力、空间想象能力,考查等价转化思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.18B.21C.24D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=alnx-$\frac{1}{2}{x^2}$+bx存在极小值,则有(  )
A.a<0,b>0B.a>0,b>0C.a<0,b<0D.a>0,b<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且椭圆上的点到一个焦点的最短距离为$\frac{\sqrt{3}}{3}$b.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若点M($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)在椭圆C上,直线l与椭圆C相交于A,B两点,与直线OM相交于点N,且N是线段AB的中点,求|AB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}满足:a1+a5=4,则数列{2${\;}^{{a}_{n}}$}的前5项之积为1024(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-a|+|x-2|,x∈R
(Ⅰ)若关于x的不等式f(x)≤a在R上有解,求实数a的最小值M;
(Ⅱ)在(Ⅰ)的条件下,已知正实数m,n,p满足m+2n+3p=M,求$\frac{3}{m}$+$\frac{2}{n}$+$\frac{1}{p}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知变量x,y满足约束条件$\left\{\begin{array}{l}x-y≥2\\ x+y≤4\\ y≥-1\end{array}\right.$,则目标函数z=x-2y的最小值为(  )
A.-1B.1C.3D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某地政府拟在该地一水库上建造一座水电站,用泄流水量发电.图是根据该水库历年的日泄流量的水文资料画成的日泄流量X(单位:万立方米)的频率分布直方图(不完整),已知X∈[0,120),历年中日泄流量在区间[30,60)的年平均天数为156,一年按364天计.
(Ⅰ)请把频率分布直方图补充完整;
(Ⅱ)已知一台小型发电机,需30万立方米以上的日泄流量才能运行,运行一天可获利润为4000元,若不运行,则每天亏损500元;一台中型发电机,需60万立方米以上的日泄流量才能运行,运行一天可获利10000元,若不运行,则每天亏损800元;根据历年日泄流量的水文资料,水电站决定安装一台发电机,为使一年的日均利润值最大,应安装哪种发电机?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}是单调递减的等差数列,S6=S11,有以下四个结论:
(1)a9=0
(2)当n=8或n=9时,Sn取最大值
(3)存在正整数k使得Sk=0
(4)存在正整数m使得Sm=S2m
其中正确的是(1),(2),(3).

查看答案和解析>>

同步练习册答案