精英家教网 > 高中数学 > 题目详情
3.对于各数互不相等的正整数数组(i1,i2,i3,…,in)(n是不小于3的正整数),若对任意的p,q∈{1,2,3,…,n},当p<q时,有ip>iq,则称ip,iq是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序”数,如数组(2,3,1)的逆序数等于2.
(1)则数组(4,2,3,1)的逆序数等于5.
(2)若数组(i1,i2,i3,…,in)的逆序数为n,则数组(in,in-1,…,i1)的逆序数为$\frac{{n}^{2}-3n}{2}$.

分析 本题可以由逆序数的定义出发,用穷举的方法得到第一个空格的答案,然后用排列组合的方法得出第二个空格的答案.

解答 解:(1)∵数组(4,2,3,1)的逆序分别为4,2;4,3;4,1;2,1;3,1;
∴数组(4,2,3,1)的逆序数为5;
(2)∵若数组(i1,i2,i3,…,in)中的逆序数为n,
∴这个数组中可以组成${C}_{n}^{2}$=$\frac{n(n-1)}{2}$实数对;
∴数组(in,in-1,…,i1)的逆序数为:$\frac{n(n-1)}{2}$-n=$\frac{{n}^{2}-3n}{2}$.
故答案为5;$\frac{{n}^{2}-3n}{2}$.

点评 本题考查一个新定义问题,解题的关键是读懂题目条件中所给的条件,并且能够利用条件来解决问题,本题考查排列组合数的应用,考查列举法,是一个非常新颖的问题,是一个考查学生理解能力的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)2lg5+lg4+ln$\sqrt{e}$;
(Ⅱ)已知第二象限角α满足sinα=$\frac{1}{3}$,求cosα的值;
(Ⅲ)已知tanα=2,求$\frac{4cosα+sinα}{3cosα-2sinα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知二次函数f(x)满足:①$f(x)≤f({\frac{1-2a}{2}})({a∈R})$; ②若x1<x2且x1+x2=0时,有f(x1)>f(x2).则实数a的取值范围是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设m∈R,若函数f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函数,则f(x)的单调递增区间是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的各项均为正数,且a1=1,对任意的n∈N*,均有an+12-1=4an(an+1),bn=2log2(1+an)-1.
(1)求证:{1+an}是等比数列,并求出{an}的通项公式;
(2)若数列{bn}中去掉{an}的项后,余下的项组成数列{cn},求c1+c2+…+c100
(3)设dn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,数列{dn}的前n项和为Tn,是否存在正整数m(1<m<n),使得T1、Tm、Tn成等比数列,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方体中,E,F是棱A'B'与D'C'的中点,面EFCB与面ABCD所成二面角(取锐角)的正切值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数z满足iz=|1-i|,则z的虚部为$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=x2 与直线y=x 所围成的封闭图形的面积为(  )
A.1B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是奇函数,当x>0时,f(x)=log2(x+1),则f(-3)=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

同步练习册答案