精英家教网 > 高中数学 > 题目详情
[x]表示x的整数部分,即[x]是不超过x的最大整数,则[log21]+[log22]+[log23]+[log24]+…+[log232]=
 
考点:对数的运算性质
专题:函数的性质及应用
分析:利用[x]的定义可得:[log21]=0,[log22]=[log23]=1,[log24]=[log25]=…=[log27]=2,[log28]=[log29]=…=[log215]=3,[log216]=[log217]=…=[log231]=4,[log232]=5.即可得出.
解答: 解:[log21]=0,
[log22]=[log23]=1,
[log24]=[log25]=…=[log27]=2,
[log28]=[log29]=…=[log215]=3,
[log216]=[log217]=…=[log231]=4
[log232]=5.
∴[log21]+[log22]+[log23]+[log24]+…+[log232]=0+1×2+2×4+3×8+4×16+5=103.
故答案为:103.
点评:本题考查了[x]的定义、数列求和、对数的运算性质,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知复数z=m2-5m+6+(m2-3m)i,当实数m取何值时.
(Ⅰ)z为实数;
(Ⅱ)复数z对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点.现将△ADE沿DE折起,得四棱锥A-BCDE(如图2).
(1)求证:EF∥平面ABC;
(2)若平面ADE⊥平面BCDE,求四面体FDCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(1,
1
3
)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项和Sn满足Sn-Sn-1=
Sn
+
Sn+1
(n≥2).
(1)求数列{an}和{bn}的通项公式;
(2)若数列{
1
bnbn+1
}的前n项和为Tn,问Tn
1000
2009
的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线x2-
y2
b2
=1(b>0)的两个焦点分别是F1、F2,点P在双曲线上,且PF2垂直于x轴,∠PF1F2=30°,则此双曲线的渐近线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四边形ABCD中,AB∥CD,AB=2CD,M,N分别为CD、BC的中点,若
AB
AM
AN
,则λ+μ=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

a
是已知的平面向量,向量
a
b
c
在同一平面内且两两不共线,有如下四个命题:
①给定向量
b
,总存在向量
c
,使
a
=
b
+
c

②给定向量
b
c
,总存在实数λ和μ,使
a
b
c

③给定单位向量
b
和正数μ,总存在单位向量
c
和实数λ,使
a
b
c

④若|
a
|=2,存在单位向量
b
c
和正实数λ,μ,使
a
b
c
,则3λ+3μ≥6
其中真命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若α为锐角,且sin(
π
3
-α)=
1
3
,则sinα=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=asinx+bx+c(a,b,c∈R),若f(0)=-2,f(
π
2
)=1,则f(-
π
2
)=
 

查看答案和解析>>

同步练习册答案