精英家教网 > 高中数学 > 题目详情
已知复数z=m2-5m+6+(m2-3m)i,当实数m取何值时.
(Ⅰ)z为实数;
(Ⅱ)复数z对应的点在第四象限.
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:(Ⅰ)由复数z的虚部等于0求得m的值;
(Ⅱ)由实部大于0且虚部小于0联立不等式组求解m的取值范围.
解答: 解:(1)当z=m2-5m+6+(m2-3m)i为实数时,m2-3m=0,
即m=0或3;
(2)复数对应的点在第四象限,则
m2-5m+6>0
m2-3m<0.

m>3或m<2
0<m<3

∴0<m<2.
点评:本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
1
2
ax2-(1+a)x(a∈R)
(1)讨论函数的单调性;
(2)若函数f(x)在(2,3)上有极值点,求a的范围;
(3)求证:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n(n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x•ex的单调递减区间为
 
,其最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标系xOy中,直线l的参数方程为
x=3t+2
y=4t
(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2-4ρcosθ+3=0.点P在直线l上,点Q在曲线C上,求PQ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.求{an}的前n项和Sn及使得Sn最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1+a3是a2与a4的等差中项,且以a3-2,a3,a3+2为边长的三角形是直角三角形.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足b1=2,且bn+1=bn+an+n,求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P-CD-B为45°
(1)求证:①AF∥平面PEC   
②平面PEC⊥平面PCD
(2)设AD=2,CD=2
2
,求③点A到平面PEC的距离④二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

[x]表示x的整数部分,即[x]是不超过x的最大整数,则[log21]+[log22]+[log23]+[log24]+…+[log232]=
 

查看答案和解析>>

同步练习册答案