精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),则|AB|=
 
考点:空间两点间的距离公式
专题:空间位置关系与距离
分析:利用空间两点间距离公式的计算即可得出结果.
解答: 解:∵点A(1,0,2),B(1,-3,1),
则|AB|=
(1-1)2+(0+3)2+(2-1)2
=
10

故答案为:
10
点评:熟练掌握空间两点间距离公式是解题的关键,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-mx+m2-19=0},B={y|y2-5y+6=0},C={z|z2+2z-8=0},是否存在实数m,同时满足A∩B≠∅,A∩C=∅.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x-
π
3
).
(Ⅰ)请你用“五点法”画出函数f(x)在长度为一个周期的闭区间上的图象;
(Ⅱ)若x∈[
π
2
,π]时,求函数f(x)的最值以及取得最值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=m2-5m+6+(m2-3m)i,当实数m取何值时.
(Ⅰ)z为实数;
(Ⅱ)复数z对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABCDEF中,底面ABCD是正方形,四边形BDEF是矩形,平面BDEF⊥平面ABCD,G和H分别是CE和CF的中点.
(1)求证:平面AFC⊥平面BDEF;
(2)求证:平面BDGH∥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
2
x
-mlnx(m∈R).
(Ⅰ)若m=4,求f(x)在(1,f(1))处的切线方程;
(Ⅱ)若f(x)在(0,+∞)单调递增,求m的取值范围;
(Ⅲ)求g(x)=f(x)+(m+3)lnx+1的零点个数.(ln2≈0.693,ln3≈1.099).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(-2,-1),
b
=(λ,1),λ∈R.
(Ⅰ)当λ=3时,求
a
b
及|
a
+
b
|;
(Ⅱ)若
a
b
的夹角的余弦值为正,λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在矩形ABCD中,AD=2,AB=4,E,F分别为边AB,AD的中点.现将△ADE沿DE折起,得四棱锥A-BCDE(如图2).
(1)求证:EF∥平面ABC;
(2)若平面ADE⊥平面BCDE,求四面体FDCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
是已知的平面向量,向量
a
b
c
在同一平面内且两两不共线,有如下四个命题:
①给定向量
b
,总存在向量
c
,使
a
=
b
+
c

②给定向量
b
c
,总存在实数λ和μ,使
a
b
c

③给定单位向量
b
和正数μ,总存在单位向量
c
和实数λ,使
a
b
c

④若|
a
|=2,存在单位向量
b
c
和正实数λ,μ,使
a
b
c
,则3λ+3μ≥6
其中真命题是
 

查看答案和解析>>

同步练习册答案