精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-mx+m2-19=0},B={y|y2-5y+6=0},C={z|z2+2z-8=0},是否存在实数m,同时满足A∩B≠∅,A∩C=∅.
考点:交集及其运算
专题:集合
分析:求出集合B、C,利用A∩B≠∅,A∩C=∅.然后求解m即可.
解答: 解:B={y|y2-5y+6=0}={2,3},C={z|z2+2z-8=0}={2,-4},
因为A∩B≠∅,A∩C=∅.
所以3∈A,-4∉A,2∉A,
∴9-3m+m2-19=0,
可得m=-2,m=5,
当m=-2时,A={x|x2-mx+m2-19=0}={3,-5},满足题意;
当m=5时,A={x|x2-mx+m2-19=0}={2,3},不满足题意;
所以m=-2为所求.
点评:本题考查集合的运算,交集与并集的关系,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某单位组织50名志愿者利用周末和节假日参加社会公益活动,活动内容是:1.到各社会宣传慰问,倡导文明新风;2.到指定的社区、车站、码头做义工,帮助那些需要帮助的人.各位志愿者根据各自的实际情况,选择了不同的活动项目,相关的数据如下表所示:
宣传慰问义工救助总计
20至40岁111627
大于40岁15823
总计262450
(1)用分层抽样的方法在做义工的志愿者中随机抽取6名,大于40岁的应该抽取几名?
(2)在上述抽取的6名志愿者中任取2名,求恰有1名志愿者年龄大于40岁的概率.
(3)如果“宣传慰问”与“做义工”是两个分类变量,并且计算出随机变量k2=2.981,那么你有多大把握认为选择做宣传慰问与做义工是与年龄有关系的?
参考数据P(k2≥x00.150.100.050.0250.0100.005
x02.0722.7063.8415.0246.6357.879

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(2-a)(x-1)-2lnx.
(1)当a=1时,求f(x)的最小值;
(2)若a≥2-4ln2,求证:函数f(x)在(0,
1
2
)上无零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=lnx+
1
2
ax2-(1+a)x(a∈R)
(1)讨论函数的单调性;
(2)若函数f(x)在(2,3)上有极值点,求a的范围;
(3)求证:
ln2
2
+
ln3
3
+
ln4
4
+…+
lnn
n
n(n-1)
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,动圆D过定点A(0,2),圆心D在抛物线x2=4y上运动,MN为圆D在x轴上截得的弦,当圆心D运动时,记|AM|=m,|AN|=n.
(Ⅰ)求证:|MN|为定值;
(Ⅱ)求
m2+n2
mn
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=1,
an
an-1
=1-
1
n
(n≥2),数列{bn}的前n项和为Tn,且Tn=2(bn-1)(n∈N*),
(1)求数列{an},{bn}的通项公式
(2)记cn=
bn
an
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心为坐标原点O,右焦点为F(1,0),短轴长为2.
(1)求椭圆C的方程;
(2)设直线l:y=kx+b与椭圆C交于A,B两点,且OA⊥OB,求证直线l与以原点为圆心的定圆相切,并求该定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x•ex的单调递减区间为
 
,其最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),则|AB|=
 

查看答案和解析>>

同步练习册答案