精英家教网 > 高中数学 > 题目详情
已知向量
a
=(-2,-1),
b
=(λ,1),λ∈R.
(Ⅰ)当λ=3时,求
a
b
及|
a
+
b
|;
(Ⅱ)若
a
b
的夹角的余弦值为正,λ的取值范围.
考点:数量积表示两个向量的夹角,向量的模,平面向量数量积的运算
专题:平面向量及应用
分析:(Ⅰ)根据向量数量积的坐标运算,根据向量坐标求向量长度的方法即可求解本问;
(Ⅱ)根据数量积的坐标运算求出
a
b
,并且
a
b
>0
从而求出λ的范围.
解答: 解:(Ⅰ)λ=3时,
b
=(3,1),
a
=(-2,-1)

a
b
=-6-1=-7
a
+
b
=(1,0),|
a
+
b
|=1

(Ⅱ)∵
a
b
的夹角的余弦值为正;
a
b
=-2λ-1>0

λ<-
1
2

∴λ的取值范围为(-∞,-
1
2
).
点评:考查向量的数量积的坐标运算,根据向量的坐标求向量的长度,向量数量积的计算公式:
a
b
=|
a
||
b
|cosθ
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的中心为坐标原点O,右焦点为F(1,0),短轴长为2.
(1)求椭圆C的方程;
(2)设直线l:y=kx+b与椭圆C交于A,B两点,且OA⊥OB,求证直线l与以原点为圆心的定圆相切,并求该定圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}满足a3=5,a10=-9.求{an}的前n项和Sn及使得Sn最大时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=(
1
2
x,试画出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E、F分别是AB、PD的中点,又二面角P-CD-B为45°
(1)求证:①AF∥平面PEC   
②平面PEC⊥平面PCD
(2)设AD=2,CD=2
2
,求③点A到平面PEC的距离④二面角A-EF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线C:y2=2px(p>0)上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交与A、B两点,且直线AB过点(0,-1),求△MAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
4
-y2=1的离心率为
 
,其渐近线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公比为2的等比数列,则
a1+a2+a3
a3+a4+a5
的值为
 

查看答案和解析>>

同步练习册答案