分析 (1)由an+1=-an-2bn,可得:bn=$-\frac{{a}_{n+1}+{a}_{n}}{2}$,bn+1=-$\frac{{a}_{n+2}+{a}_{n+1}}{2}$,代入bn+1=6an+6bn,化简整理可得:an+2-2an+1=3(an+1-2an),即可证明.
(2)由(1)可得:an+1-2an=-14×3n-1.化为:an+1+14×3n=2$({a}_{n}+14×{3}^{n-1})$,利用等比数列的通项公式可得:an,进而得到bn.
解答 (1)证明:由an+1=-an-2bn,可得:bn=$-\frac{{a}_{n+1}+{a}_{n}}{2}$,
∴bn+1=-$\frac{{a}_{n+2}+{a}_{n+1}}{2}$,代入bn+1=6an+6bn,
可得:-$\frac{{a}_{n+2}+{a}_{n+1}}{2}$=6an+6×($-\frac{{a}_{n+1}+{a}_{n}}{2}$),
化为:an+2-2an+1=3(an+1-2an).
a2=-2-2×4=-10,a2-2a1=-14,
∴{an+1-2an}为等比数列,首项为-14,公比为3.
(2)解:由(1)可得:an+1-2an=-14×3n-1.
化为:an+1+14×3n=2$({a}_{n}+14×{3}^{n-1})$,
∴数列$\{{a}_{n}+14×{3}^{n-1}\}$是等比数列,首项为16,公比为2.
∴an+14×3n-1=16×2n-1,
可得an=2n+3-14×3n-1.
∴bn=-$\frac{{2}^{n+4}-14×{3}^{n}+{2}^{n+3}-14×{3}^{n-1}}{2}$=28×3n-1-3×2n+2.
点评 本题考查了等比数列的定义及其通项公式、递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 34 | B. | 43 | C. | 24 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 4 | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 6 | C. | 3 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com