精英家教网 > 高中数学 > 题目详情
4.某几何体是组合体,其三视图如图所示,则该几何体的体积为(  )
A.$\frac{16}{3}$+8πB.$\frac{32}{3}$+8πC.16+8πD.$\frac{16}{3}$+16π

分析 由三视图知该几何体是一个组合体:下面是半个圆柱、上面两个四棱锥,由三视图求出几何元素的长度、并判断出位置关系,由柱体、锥体的体积公式求出几何体的体积.

解答 解:根据三视图可知几何体是一个组合体:下面是半个圆柱、上面两个四棱锥,
且两个四棱锥的定点相对、底面是俯视图中两个矩形两条边分别是2、4,
其中一条侧棱与底面垂直,高都是2,
圆柱的底面圆半径是2、母线长是4,
∴几何体的体积V=2×$\frac{1}{3}×2×4×2$+$\frac{1}{2}×π×{2}^{2}×4$=$\frac{32}{3}+8π$,
故选:B.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:y2=2px(p>0)的焦点为F,A为C上异于原点的任意一点.
(1)若直线l过焦点F,且与抛物线C交于A,B两点,若F是AB的一个靠近点B的三等分点,且点B的横坐标为1,弦长AB=9时,求抛物线C的方程;
(2)在(1)的条件下,若M是抛物线C上位于曲线AOB(O为坐标原点,不含端点A,B)上的一点,求△ABM的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合A={x|x2+ax+b=0}={1},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在如图所示的三棱锥S-ABC中,SA=AB=SB=$\sqrt{2}$,BC=AC=1,SC=$\sqrt{3}$,则三棱锥S-ABC的外接球的表面积为3π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2+bx+c,且f(1+x)=f(1-x),f(0)=-2.
(1)求f(x)的解析式;
(2)已知a∈R,p:当0<x<1时,不等式f(x)+3<2x+a恒成立;q:当x∈[-2,2]时,g(x)=f(x)-ax是单调函数,若p或q为真,p且q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱柱ABC一A1B1C1的侧棱垂直于底面,各顶点都在同一球面上,若该棱柱的体积为2$\sqrt{6}$,AB=2,AC=1,∠BAC=60°,则此球的体积等于(  )
A.36πB.72πC.144πD.288π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.四棱锥P-ABCD的底面ABCD是矩形,侧面PAD⊥平面ABCD,∠APD=120°,AB=PA=PD=2,则该四棱锥P-ABCD的外接球的体积为$\frac{20\sqrt{5}}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2+ax+2.
(Ⅰ)求实数a的值,使函数y=f(x)在区间[-5,5]上为偶函数;
(Ⅱ)求实数a的取值范围,使函数y=f(x)在区间[-5,5]上是单调函数;
(Ⅲ)求f(x)在区间[-5,5]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若0≤x≤1,0≤y≤4,则xy2-y的最大值为12.

查看答案和解析>>

同步练习册答案