精英家教网 > 高中数学 > 题目详情
在研究某种线性相关问题时获得5组数据(x,y)(x为解释变量,y为预报变量),并根据这五组数据得到线性回归方程
y
=7x-2,如果已知前四组数据依次为(1,5)(3,20),(4,30),(5,25),第五组数据不慎丢失,但知道该组数据为(7,m),则m的值为(  )
A、47B、48C、49D、50
考点:线性回归方程
专题:概率与统计
分析:回归直线方程过样本中心点,求出样本中心坐标,代入方程即可求出m的值.
解答: 解:
.
x
=
1+3+4+5+7
5
=4,
.
y
=
5+20+30+25+m
5
=16+
m
5

因为回归直线方程过样本中心点,又回归直线方程:
y
=7x-2,
所以16+
m
5
=28-2,所以m=50.
所以该组数据为(7,50),
故选:D.
点评:本题考查回归直线方程的应用,注意回归直线方程过样本中心点,这是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
(1)导数f′(x0)=0是y=f(x)在x0处取得极值的既不充分也不必要条件;
(2)若等比数列的n项sn=2n+k,则必有k=-1;
(3)若x∈R+,则2x+2-x的最小值为2;
(4)函数y=f(x)在[a,b]上必定有最大值、最小值;
(5)平面内到定点(3,-1)的距离等于到定直线x+2y-1的距离的点的轨迹是抛物线.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)的图象过点(2,4),则f(
1
2
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

6(2-π)6
+(
54-π
5=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1
3
x3-4x+
1
3
的极大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果mx>nx对于一切x>0都成立,则正数m,n的大小关系为(  )
A、m>nB、m<n
C、m=nD、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

有两只水桶,桶1中有a升水,桶2是空桶.现将桶1中的水缓慢注入桶2中,t分钟后桶1中剩余的水符合指数衰减曲线y1=
a
2kt
,桶2中的水就是y2=a-
a
2kt
(k为常数),假设5分钟时,桶1和桶2中的水量相等.从注水开始时,经过m分钟时桶2中的水是桶1中水的3倍,则m=(  )
A、8B、10C、15D、20

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,-2),
b
=(x,4),且
a
b
,则|
a
+
b
|的值是(  )
A、2
B、
5
C、
83
D、
53

查看答案和解析>>

科目:高中数学 来源: 题型:

设某种动物的体重y(单位:千克)与身长x(单位:厘米)具有线性相关关系,根据一组样本数据建立的回归直线方程为
y
=0.85x-85.71,则下列结论中不正确的是(  )
A、y与x具有正的线性相关关系
B、回归直线必定经过样本中心点(
.
x
.
y
C、若某一种该种动物身长增加1厘米,则其体重必定为0.85千克
D、若某一只该种动物身长170厘米,则其体重必定为58.79千克

查看答案和解析>>

同步练习册答案