精英家教网 > 高中数学 > 题目详情

如图,矩形ABCD的长AB=2,宽AD=x,若PA⊥平面ABCD,矩形的边CD上至少有一个点Q,使得PQBQ,则x的范围是            

0<x≤1

解析试题分析:由PA⊥平面ABCD,PQ⊥BQ,可得BQ⊥AQ,从而问题可转化为以AB为直径的圆与与线段CD有公共点.解:如图所示:连接AQ,因为PA⊥平面ABCD,BQ⊥PQ,BQ?平面ABCD,所以BQ⊥AQ,矩形的边CD上至少有一个点Q,可转化为以AB为直径的圆与与线段CD有公共点,所以圆心到CD的距离小于等于半径,即0<x≤1.故答案0<x≤1
考点:空间直线与直线的垂直关系
点评:本题考查空间直线与直线的垂直关系,考查推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

设a ,b是平面外的两条直线,给出下列
四个命题:①若a∥b ,a∥,则b∥
②若a∥b ,b 与相交,则a 与也相交;③若a∥,b∥,则a∥b ;④若a 与b 异面,a∥,则.则所有正确命题的序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在正方体ABCD—A1B1C1D1各个表面的对角线中,与直线异面的有__________条

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知点A是曲线上任意一点,则点A到直线=4的距离的最小值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图是正方体的平面展开图,在这个正方体中,①平面;②平面;③平面平面;④平面平面.以上四个命题中,正确命题的序号是            

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知各顶点都在同一个球面上的正四棱锥高为3,体积为6,则这个球的表面积是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正四棱锥P-ABCD的所有棱长都相等,则侧棱与底面所成的角为           .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

正三棱锥中,,的中点分别为,且,则正三棱锥外接球的表面积为                    .

查看答案和解析>>

同步练习册答案