精英家教网 > 高中数学 > 题目详情
4.在下列命题中,真命题的个数是(  )
①a∥α,b⊥α⇒a⊥b;②a∥α,b∥α⇒a∥b;
③a⊥α,b⊥α⇒a∥b;④a⊥b,b?α⇒a⊥α.
A.0个B.1个C.2个D.3个

分析 根据线面的位置关系判断与性质定理,结合图形证明或举出反例.

解答 解:①由于a∥α,故而存在a′?α,使得a∥a′,又b⊥α,∴b⊥a′,∴a⊥b;故①正确.
②∵a∥α,b∥α,∴存在直线a′?α,b′?α,使得a∥a′,b∥b′,当a′,b′相交时,a,b相交或异面.故②错误.
③由线面垂直的性质定理“垂直于同一个平面的两条直线平行“可知③正确.
④由线面垂直的判定可知a垂直α内的一条直线b,不能保证a⊥α,故④错误.
故选:C.

点评 本题考查了空间直线与平面的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知直线a?平面α,直线b?平面β,α⊥β,则“a⊥b”是“a⊥β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)为偶函数,当x<0时,f(x)=sinx+cosx,则f($\frac{π}{4}$)=(  )
A.0B.$\sqrt{2}$C.-$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.日本“购买”钓鱼岛闹剧以来,我国渔政船加强了钓鱼岛附近海域的巡逻.正在海上A处执行任务的渔政船甲和在B处执行任务的渔政船乙,同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70km的C处,渔政船乙在渔政船甲的南偏西20°方向的B处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C处沿直线AC航行前去救援,渔政船乙仍留在B处执行任务,渔政船甲航行30km到达D处时,收到新的指令另有重要任务必须执行,于是立即通知在B处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC航行前去救援渔船丙),此时∠ADB=30°,问渔政船乙要航行多少距离才能到达渔船丙所在的位置C处实施营救.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O在△ABC内,∠AOB=∠BOC=∠COA=120°,且AB⊥AC,AB=3,BC=5,则$\overrightarrow{OA}$•$\overrightarrow{OB}$+$\overrightarrow{OB}$•$\overrightarrow{OC}$+$\overrightarrow{OC}$•$\overrightarrow{OA}$的值为(  )
A.8B.-$4\sqrt{3}$C.16D.$16\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.定义f(n)=$\sum_{i=1}^{n}$[$\frac{n}{i}$],其中[x]表示不超过实数x的最大整数,则f(2010)-f(2009)=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知等差数列1,a,b,又4,a+2,b+1为等比数列,求该等差数列的公差(  )
A.-1B.0C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,且F1,F2与短轴的一个顶点Q构成一个等腰直角三角形,点P($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$)在椭圆C上.
(I)求椭圆C的标准方程;
(Ⅱ)过F2作互相垂直的两直线AB,CD分别交椭圆于点A,B,C,D,且M,N分别是弦AB,CD的中点,求△MNF2面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.给出下列四个问题:
①求方程ax2+bx+c=0的解;
②判断直线和圆的位置关系;
③给三名同学的成绩排名次;
④求两点间的距离.
其中不需要用条件语句来描述其算法的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案