精英家教网 > 高中数学 > 题目详情
9.已知f(x)=bx-b,g(x)=(bx-1)ex,b∈R
(Ⅰ)若b≥0,讨论g(x)的单调性;
(Ⅱ)若不等式f(x)>g(x)有且仅有两个整数解,求b的取值范围.

分析 (Ⅰ)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;
(Ⅱ)分离参数,问题转化为b<$\frac{{e}^{x}}{{xe}^{x}-x+1}$有两个整数解,得到关于b的不等式组,解出即可.

解答 解:(Ⅰ)g′(x)=ex(bx+b-1),
b=0时,g′(x)<0在R恒成立,
即g(x)在R递减,
b>0时,g′(x)>0的解集是{x|x>$\frac{1}{b}$-1},
即g(x)在($\frac{1}{b}$-1,+∞)递增,在(-∞,$\frac{1}{b}$-1)递减;
(Ⅱ)由不等式f(x)>g(x)有且仅有两个整数解,
b则a(xex-x+1)<ex有两个整数解.
因为y=x(ex-1)+1,当x>0时,ex-1>0,x(ex-1)+1》>0;
当x<0时,ex-1<0,x(ex-1)+1>0,
所以,b<$\frac{{e}^{x}}{{xe}^{x}-x+1}$有两个整数解,
设g(x)=$\frac{{e}^{x}}{{xe}^{x}-x+1}$,则g′(x)=$\frac{{e}^{x}(2-x{-e}^{x})}{{({xe}^{x}-x+1)}^{2}}$,
令h(x)=2-x-ex,则h′(x)=-1-ex<0,
又h(0)=1>0,h((1)=1-e<0,
所以?x0∈(0,1),使得h(x0)=0,
∴g(x)在为增函数,在(x0,+∞)为减函数,
∴b<$\frac{{e}^{x}}{{xe}^{x}-x+1}$有两个整数解的充要条件是:
$\left\{\begin{array}{l}{b<g(0)=1}\\{b<g(1)=1}\\{b≥g(-1)=\frac{1}{2e-1}}\\{b≥g(2)=\frac{{e}^{2}}{{2e}^{2}-1}}\end{array}\right.$,
解得:$\frac{{e}^{2}}{{2e}^{2}-1}$≤b<1.

点评 本题考查了函数函数的单调性、最值问题,考查导数的应用以及函数恒成立问题,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:x2+$\frac{{y}^{2}}{4}$=1,直线l:y=2x+m(m∈R),点M(1,0).
(1)若直线l与椭圆C恒有公共点,求m的取值范围;
(2)若动直线l与椭圆C相交于A,B两点,线段AB的中点为P,求|PM|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.焦距为2c,且c,$\sqrt{2}$,2成等比数列.
(I)求椭圆C的标准方程;
(Ⅱ)点B坐标为(0,$\sqrt{2}$),问是否存在过点B的直线1交椭圆C于M,N两点,且满足$\overrightarrow{OM}$$⊥\overrightarrow{ON}$(O为坐标原点)?若存在,求出此时直线l的方程.若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(1+x)n(n∈N*)二项展开式中x2的系数为15,则${∫}_{0}^{1}$xndx=(  )
A.$\frac{1}{7}$B.7C.15D.$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个必要不充分条件是(  )
A.0<m<1B.-4<m<0C.m<1D.-3<m<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.南北朝时期我国数学著作《张丘建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,的金四斤,持出,下四人后入得金三斤,持出,中间三人未到者,亦依等次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的八等人和九等人两人所得黄金之和(  )
A.多$\frac{7}{12}$斤B.少$\frac{7}{12}$斤C.多$\frac{1}{6}$斤D.少$\frac{1}{6}$斤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面内一动点M到两定点$B_1^{\;}({0,-1}),B_2^{\;}({0,1})$和连线的斜率之积为$-\frac{1}{2}$
(1)求动点M的轨迹E的方程;
(2)设直线l:y=x+m与轨迹E交于A,B两点,线段AB的垂直平分线交x轴点P,当m变化时,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,点T(-8,0),点R,Q分别在x和y轴上,$\overrightarrow{QT}•\overrightarrow{QR}=0$,点P是线段RQ的中点,点P的轨迹为曲线E.
(1)求曲线E的方程;
(2)直线L与圆(x+1)2+y2=1相切,直线L与曲线E交于M,N,线段MN中点为A,曲线E上存在点C满足$\overrightarrow{OC}$=2λ$\overrightarrow{OA}$(λ>0),求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i表示虚数单位,则$|\frac{i}{2i+1}|$=(  )
A.1B.5C.$\frac{{\sqrt{5}}}{5}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案