精英家教网 > 高中数学 > 题目详情
19.假设有两个分类变量X和Y的2×2列联表:
X\Yy1y2总计
x1a40a+40
x230-a3060-a
总计3070100
在犯错误的概率不超过百分之5的前提下,下面哪个选项无法认为变量X,Y有关联(  )
A.a=10B.a=12C.a=8D.a=9

分析 在犯错误的概率不超过百分之5的前提下,下面哪个选项无法认为变量X,Y有关联(

解答 解:根据列联表知,a与30-a的差距越小,则越无法认为变量X、Y有关联,
分析四个选项,B中a=12时,a与30-a的差距最小,其他选项不满足条件.
故选:B.

点评 本题考查了列联表与独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设a,b,c是互不相等的正数,则下列不等式中不恒成立的是(  )
A.$\frac{a+b}{2}$≥$\sqrt{ab}$B.a2+$\frac{1}{{a}^{2}}$ ≥a+$\frac{1}{a}$C.a-b+$\frac{1}{a-b}$≥2D.|a-b|≤|a-c|+|b-c|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.阅读如图的程序框图,若输入N的值为36,则输出N的值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校一课题小组对本市工薪阶层对于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的跑哪里分布及对“楼市限购令”赞成人数选如表:
月收入
(单位:百元)
[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数4812521
(1)完成下面月收入频率分布直方图(注意填写纵坐标)及2×2列联表:
月收入不低于55百元人数月收入低于55百元人数合计
赞成a=3c=2932
不赞成b=7d=1118
合计104050           

(2)若从收入(单位:百元)在[15,25)的倍被调查者中随机选取两人进行追踪调查,求选中的2人恰好有1人赞成“限购令”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.利用独立性检验来考虑高血压与患心脏病是否有关时,经计算,K2的观测值为8.3 则有(  )
(参考值:P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010)
A.有99%以上的把握认为“高血压与患心脏病无关”
B.有99%以上的把握认为“高血压与患心脏病有关”
C.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”
D.在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l的极坐标方程为ρ=$\frac{\sqrt{3}}{sin(θ+\frac{π}{3})}$,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosφ}\\{y=2sinφ}\end{array}\right.$,(φ为参数)
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换$\left\{\begin{array}{l}{x′=x}\\{y′=\frac{1}{2}y}\end{array}\right.$得到曲线C’,求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点(8,3),(-3,6)在函数f(x)=$\left\{\begin{array}{l}{lo{g}_{a}x,x>0}\\{{b}^{x}-2,x≤0}\end{array}\right.$的图象上
(1)求函数f(x)的解析式
(2)求不等式f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=f(x)的图象上各点的横坐标缩短到原来的一半(纵坐标不变),再将其纵坐标伸长到原来的3倍(横坐标不变)得到的图象对应的函数解析式为(  )
A.$y=\frac{1}{3}f(2x)$B.y=3f(2x)C.$y=\frac{1}{3}f(\frac{x}{2})$D.$y=3f(\frac{x}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示,在扇形AOB中,∠AOB=$\frac{π}{3}$,圆C内切于扇形AOB,若随机在扇形AOB内投一点,则该点落在圆C外的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案