精英家教网 > 高中数学 > 题目详情
10.若a>1,b<1,则下列两式的大小关系为ab+1<a+b.

分析 作差分解因式ab+1-(a+b)=(1-a)(1-b)判断符合即可.

解答 解:作差ab+1-(a+b)=(1-a)(1-b)
∵a>1,b<1,
∴1-a<0,1-b>0,
∴(1-a)(1-b)<0,
即ab+1<a+b.
故答案为:<

点评 本题作差法比较大小,关键是分解因式,判断符号,属于容易题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.关于x的不等式ax+b>0的解集为(-∞,1),则关于x的不等式$\frac{bx-a}{x+2}$>0的解集为(-∞,-2)∪(-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.画出下列不等式表示的平面区域:
(1)x+y≤2;
(2)2x-y>2;
(3)y≤-2;
(4)x≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,已知⊙O是△ABC的外接圆,直径为2R,试用R与∠A、∠B、∠C的三角比来表示三角形的三条边长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.($\sqrt{x}$-$\frac{1}{\root{3}{x}}$)10的展开式的中间项为-252${x}^{\frac{5}{6}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若一个球的表面积为100π,现用两个平行平面去截这个球面,两个截面圆的半径为r1=4,r2=3.则两截面间的距离为1或7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}满足:a1=λ,an+1=$\frac{2}{{a}_{n}+1}$(n∈N*
(1)若a1>a2,求实数λ的取值范围;
(2)若λ≠-2,记bn=$\frac{{a}_{n}-1}{{a}_{n}+2}$,求数列{bn}的通项公式;
(3)是否存在实数λ,使得数列{an}是递减数列?若存在,求出实数λ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三个内角分别为A,B,C,若$\overrightarrow{a}$=(cosA,sinA),$\overrightarrow{b}$=(cosB,sinB),且$\overrightarrow{a}$•$\overrightarrow{b}$=1,则△ABC一定是(  )
A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.一个算法的程序框图如图所示,若输入的x值为2015,则输出的i值为(  )
A.3B.5C.6D.9

查看答案和解析>>

同步练习册答案