精英家教网 > 高中数学 > 题目详情
20.关于x的不等式ax+b>0的解集为(-∞,1),则关于x的不等式$\frac{bx-a}{x+2}$>0的解集为(-∞,-2)∪(-1,+∞).

分析 由条件可得a+b=0(a<0),再将分式不等式转化为二次不等式,即可求得解集.

解答 解:由x的不等式ax+b>0的解集为(-∞,1),
可得a+b=0(a<0),
即b=-a,
关于x的不等式$\frac{bx-a}{x+2}$>0即为
$\frac{-ax-a}{x+2}$>0,
即有$\frac{x+1}{x+2}$>0,
即为(x+1)(x+2)>0,
解得x>-1或x<-2.
则解集为(-∞,-2)∪(-1,+∞).
故答案为:(-∞,-2)∪(-1,+∞).

点评 本题考查含参不等式的解法,主要考查分式不等式的解法,注意转化为二次不等式求解,以及方程和不等式的转化思想的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设0<|α|<$\frac{π}{4}$,则下列不等式中一定成立的是 (  )
A.sin2α>sinαB.cos2α<cosαC.tan2α>tanαD.tan2α<tanα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直三棱柱ABC-A1B1C1中,已知AB=5,AC=4,BC=3,AA1=4,点D在棱AB上.
(Ⅰ)若D是AB中点,求证:AC1∥平面B1CD;
(Ⅱ)当$\frac{BD}{AB}$=$\frac{1}{3}$时,求二面角B-CD-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数y=sinx,x∈[π,2π]的值域是(  )
A.[-1,1]B.[0,1]C.[-1,0]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知Sn是等比数列{an}的前n项和,S4,S2,S3成等差数列,且a2+a3+a4=-18.
(1)求数列{an}的通项公式;
(2)是否存在正整数n,使得Sn≥2015?若存在,求出符合条件的所有n的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知a+b>0,b=4a,(a+b)n的展开式按a的降幂排列,其中第n项与第n+1项相等,求正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设等比数列{an}的首项a1=$\frac{1}{3}$,前n项和为Sn,若S1、2S2、3S3成等差数列,则{an}的通项为(  )
A.an=$\frac{1}{{3}^{n}}$B.an=3nC.an=$\frac{1}{{3}^{n-1}}$D.an=$\frac{1}{{3}^{1-n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设x,y满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y-1≥0}\\{x-2y+2≥0}\end{array}}$,则z=x+3y+m的最大值为4,则m的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a>1,b<1,则下列两式的大小关系为ab+1<a+b.

查看答案和解析>>

同步练习册答案