分析 (1)由正弦定理化简已知可得3a=b,利用三角形面积公式可得$S=\frac{1}{2}absinC=\frac{3}{2}{a^2}×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,进而解得a,b的值.
(2)由余弦定理可得$c=\sqrt{7}a$,进而利用余弦定理即可解得cosB的值.
解答 (本题满分为12分)
解:(1)在△ABC中,∵3sinA=sinB,
∴由正弦定理得,3a=b,
∴$S=\frac{1}{2}absinC=\frac{3}{2}{a^2}×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,
∴a=2,b=6. …(6分)
(2)由余弦定理得${c^2}={a^2}+{({3a})^2}-2a×3a×\frac{1}{2}=7{a^2}$,
∴$c=\sqrt{7}a$,
∴$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{a^2}+7{a^2}-9{a^2}}}{{2\sqrt{7}{a^2}}}=-\frac{{\sqrt{7}}}{14}$. …(12分)
点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{6}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com