精英家教网 > 高中数学 > 题目详情
20.在△ABC中,A,B,C的对边分别是a,b,c,C=60°,3sinA=sinB.
(1)若△ABC的面积为$3\sqrt{3}$,求b的值;
(2)求cosB的值.

分析 (1)由正弦定理化简已知可得3a=b,利用三角形面积公式可得$S=\frac{1}{2}absinC=\frac{3}{2}{a^2}×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,进而解得a,b的值.
(2)由余弦定理可得$c=\sqrt{7}a$,进而利用余弦定理即可解得cosB的值.

解答 (本题满分为12分)
解:(1)在△ABC中,∵3sinA=sinB,
∴由正弦定理得,3a=b,
∴$S=\frac{1}{2}absinC=\frac{3}{2}{a^2}×\frac{{\sqrt{3}}}{2}=3\sqrt{3}$,
∴a=2,b=6.  …(6分)
(2)由余弦定理得${c^2}={a^2}+{({3a})^2}-2a×3a×\frac{1}{2}=7{a^2}$,
∴$c=\sqrt{7}a$,
∴$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{{a^2}+7{a^2}-9{a^2}}}{{2\sqrt{7}{a^2}}}=-\frac{{\sqrt{7}}}{14}$. …(12分)

点评 本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知α,β均为锐角,sinα=$\frac{\sqrt{5}}{5}$,tanβ=3,求α-β.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆C于A,B两点,若|AF|+|BF|=4,点M到直线l的距离等于$\frac{4}{5}$,则椭圆C的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C与两平行直线x-y=0及x-y-4=0都相切,且圆心C在直线x+y=0上,
(1)求圆C的方程;
(2)若直线l:y=kx-2与圆C恒有两个不同的交点A和B,且$\overrightarrow{OA}•\overrightarrow{OB}>2$(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.f(x)=cos3x,则$f'({\frac{π}{18}})$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=4x-1,g(x)=x+1.若函数g(x)的定义域为(1,2),则函数g[f(x)]的定义域为($\frac{1}{2}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线x2=2py(p>0)的焦点在圆x2+y2+2x-1=0上,则这条抛物线的准线方程为y=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆锥底面半径为4,高为3,则该圆锥的表面积为(  )
A.16πB.20πC.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知条件p:x2-3x+2<0;条件q:|x-2|<1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案