分析 (Ⅰ)通过a2=2、a5=5可知等差数列{an}的公差d=1,进而可得其通项公式,计算即得结论;
(II)通过(I)可知,当n≥2时cn=$\frac{n(n+1)}{2}$,进而验证当n=1时成立即可.
解答 解:(Ⅰ)∵a2=2,a5=5,
∴d=$\frac{{a}_{5}-{a}_{2}}{3-2}$=1,
所以an=2+(n-2)=n,bn=${2}^{{a}_{n}}$=2n,
于是Sn=21+22+…+2n
=$\frac{2(1-{2}^{n})}{1-2}$
=2n+1-2;
(II)由(I)可知,当n≥2时cn=(cn-cn-1)+(cn-1-cn-2)+…+(c2-c1)+c1
=an+an-1+…+a2+a1
=$\frac{n(n+1)}{2}$,
又∵c1=1满足上式,
∴cn=$\frac{n(n+1)}{2}$.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,1) | B. | ($\frac{1}{2}$,1] | C. | ($\frac{1}{2}$,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 运费(元/吨) | ||
| 甲库 | 乙库 | |
| A镇 | 240+10a | 180 |
| B镇 | 260 | 210 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>1 | B. | a>-2 | C. | a≥-$\frac{1}{4}$ | D. | a≥-4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com